高级氧化法预处理叶酸生产废水试验研究

来源 :兰州理工大学 | 被引量 : 0次 | 上传用户:hurukun
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
叶酸,是一种水溶性的维生素B复合体之一。叶酸生产过程中会产生大量的难降解废水,其废水组成成分复杂,主要含蝶啶类化合物、L-N-对氨基苯甲酰谷氨酸、2,4,5-三氨基-6-羟基嘧啶硫酸盐,属于有机物浓度高、盐度高、难降解物质多的化工废水。叶酸生产工艺在中国已近三十年,废水问题一直没有彻底解决,成为制约叶酸生产发展和应用的瓶颈。本文为解决叶酸生产废水的处理问题,使用铁炭微电解-Fenton法(Fe/C-Fenton)、硅藻土负载纳米铁镍(NZVI/Ni/DM)和硅藻土负载纳米铁镍-Fenton法(NZVI/Ni/DM-Fenton)三种高级氧化技术对叶酸生产废水进行预处理,以COD和NH3-N的去除率为考察指标,分析了各种方法的pH值、反应时间、投加量等反应条件对叶酸废水处理的影响效果,探讨了降解机理和降解动力学,为实际工业生产需求提供理论依据。(1)以铁屑为零价铁,加入活性炭,铁炭原电池反应中会产生大量Fe2+,加入H2O2,形成Fenton反应,从而构筑铁炭微电解-Fenton体系。考察了铁炭微电解-Fenton技术在处理废水的过程中,初始pH、铁炭比、铁炭投加量、反应时间、H2O2投加方式、H2O2投加量对处理效果的影响。研究结果表明,初始pH、铁炭比、反应时间和H2O2投加量对叶酸生产废水处理效果影响很大。在pH为3,铁炭比2:1,双氧水用量为800mmol/L,反应时间120min的最佳条件下,对叶酸生产废水COD和NH3-N的去除率分别可达到36.87%和77.68%,同时BOD5/COD由0.13提高到0.40。铁碳微电解-Fenton试剂联用预处理叶酸生产废水的反应符合准二级动力学。(2)以硅藻土为载体,镍为掺杂金属负载纳米铁,制备硅藻土负载纳米铁镍(NZVI/Ni/DM)复合材料,以提高纳米颗粒的分散性,增强其反应活性。对负载铁镍的材料采用X射线衍射分析、扫描电镜、比表面积分析、X射线光电子能谱分析进行表征。通过扫描电镜发现纳米铁镍大部分均匀负载到硅藻土上,并均匀分散。负载后的硅藻土比表面积37.74m2/g,孔径10.20nm,孔容0.11cm3/g。考察了NZVI/Ni/DM处理叶酸生产废水过程中,pH、反应时间、温度等对反应进程的影响。实验结果表明:在室温状态下,pH控制在1-3范围内,反应时间240min,摇床转速100r/min,材料的投加量为3g/L。COD的去除率最高可达50%,NH3-N去除率80%。BOD5/COD由0.13提高到0.42。硅藻土负载纳米铁镍(NZVI/Ni/DM)处理叶酸生产废水的反应符合准二级动力学拟合。(3)将NZVI/Ni/DM复合材料的还原反应与Fenton氧化反应相结合,构筑NZVI/Ni/DM-Fenton反应体系。研究结果表明:pH控制在1-3范围内,反应时间240min,摇床转速150r/min,材料的投加量为3g/L,双氧水投加量为800mmol/L。处理后的废水,COD去除率达到59.17%,NH3-N去除率达到89.43。BOD5/COD由0.13提高到0.45,可生化性显著提高。硅藻土负载纳米铁镍-Fenton法(NZVI/Ni/DM-Fenton)处理叶酸生产废水的反应符合准二级动力学拟合。
其他文献
在现行分税制下城乡政府间财力差距较大,直接影响到社会养老保险的资金筹集问题,进而影响城乡居民享受到的养老服务质量。在我国城乡社会养老保险均等化改革中,财政转移支付
成人教育是我国教育体系中不可分割的一部分,尤其是近年来终身教育思想的传播以及全球一体化因素的日益凸显使得我国成人教育的发展愈发迅速,而英语科目的学习在成人教育中最
自周以真教授提出计算思维的概念以来,在实际学习生活中也越来越重视学生利用计算机解决问题的思维的形成及创新能力的培养,在《大学计算机基础课程教学基本要求》中也明确提出了对学生计算思维能力进行培养的要求,所以人们也习以为常的利用《大学计算机基础》课程来培养学生的计算思维能力。但是就当前状况来看多数教师将重点放在计算思维培养的方法上,而忽略培养的结果如何,所以本文即针对此问题提出了《大学计算机基础》课程
家庭金融是现代金融研究的重要组成部分。随着我国家庭债务规模日益增加,对于家庭债务风险的担忧也随之浮上台面。家庭债务问题所造成的影响不仅只局限于家庭部门内部,还会对
税收是调控住房需求的重要手段,从实践来看,我国现行税制在住房需求的调控方面,存在着重流转、轻保有以及同一化等问题,难以对住房的投机性需求进行抑制而对消费性需求予以鼓
以尿素和硝酸锌为原料,采用均匀沉淀法和水热法相结合的方法制备了纳米氧化锌。以酸性大红染料为目标降解物,对该光催化剂的性能进行了测试,运用透射电子显微镜、X射线衍射仪