【摘 要】
:
锆及锆合金因其低的热中子吸收截面、良好的力学性能和优异的耐腐蚀性能等而被广泛应用于核反应堆中的结构材料和包壳材料。但是,未来核反应堆技术朝着提高燃料燃耗和安全可靠性方向发展,传统锆合金已不能满足核工业发展的要求。相比于传统粗晶材料,大塑性变形制备的超细晶材料表现出更好的物理化学性能和力学性能。高压扭转作为典型的大塑性变形工艺之一,其通过施加高静水压力和切向剧烈剪切变形,能在较低温度下制备超细晶和纳
【基金项目】
:
国家自然科学基金面上项目(51675154),非致密钨闭塞式背压变通道转角双向镦挤非平衡晶界形成及其对脆性的影响机理研究;
论文部分内容阅读
锆及锆合金因其低的热中子吸收截面、良好的力学性能和优异的耐腐蚀性能等而被广泛应用于核反应堆中的结构材料和包壳材料。但是,未来核反应堆技术朝着提高燃料燃耗和安全可靠性方向发展,传统锆合金已不能满足核工业发展的要求。相比于传统粗晶材料,大塑性变形制备的超细晶材料表现出更好的物理化学性能和力学性能。高压扭转作为典型的大塑性变形工艺之一,其通过施加高静水压力和切向剧烈剪切变形,能在较低温度下制备超细晶和纳米晶材料。本文采用限制型高压扭转模具,在室温、1.5 GPa下对Zr-4合金进行了 1、5、10和20圈高压扭转变形实验,并对变形样进行了 400℃×1h退火实验。采用XRD、TEM、EBSD等材料表征手段,研究了 Zr-4合金在不同圈数高压扭转过程中的显微组织变化规律,结合理论知识,分析讨论了其组织演变机理。最后结合材料变形前后的显微硬度变化,讨论了 Zr-4合金在高压扭转变形过程中的强化机理。Zr-4合金在高压扭转变形过程中初始粗晶随着变形程度的增大逐渐细化为亚晶和纳米结构。初始态Zr-4合金为再结晶退火态,其平均晶粒尺寸约为3.3μm,晶粒多呈等轴状,在晶界和晶内弥散分布着少量的70nm~200nm的第二相粒子。经10圈高压扭转变形后,形成了 60nm~110nm的狭长剪切变形带和60nm~120 nm的纳米结构,第二相粒子尺寸减小至40 nm~80 nm。Zr-4合金高压扭转变形前后均为HCP结构的α-Zr,未发现ω-Zr和β-Zr,说明在高压扭转变形过程中未发生α→ω+β相变。晶粒的细化机制为剪切带反应机制与位错反应机制。经400℃×1h退火后,Zr-4合金高压扭转变形样的微晶尺寸稍有增大,微观应变和位错密度略有减小,绝大部分组织为变形组织,退火过程中主要发生了回复。经5圈高压扭转变形退火后,试样边缘部位的平均晶粒尺寸减小至1.14μm,小角度晶界的比例占80%以上,组织中存在大量的亚结构。初始态Zr-4合金具有的ND//<0001>择优取向,在变形退火后未发生明显的变化,但其织构强度随变形程度的增加在逐渐减弱。Zr-4合金经高压扭转变形后,显微硬度随着距试样中心处的距离和扭转圈数的增大而逐渐增大。经10圈和20圈高压扭转变形后,试样的显微硬度由初始态的192±4 HV分别增加至273±8 HV和278±3 HV,分别较初始态显微硬度增加了42.2%和44.8%。在扭转圈数较小时,试样的变形均匀性较差,随着扭转圈数的增加,试样的变形均匀性得到提升,在20圈高压扭转变形后试样的变形均匀性最高。Zr-4合金显微硬度的增加主要得益于细晶强化和位错强化。经400℃×1h退火后,试样的显微硬度略有下降。
其他文献
SiC陶瓷和2219铝合金都是轻质材料,随着航空技术的发展,对二者的连接提出了要求。实现SiC陶瓷和铝合金的连接面临异种材料本身性质方面不匹配的问题,同时国内外研究者几乎没有发表过两种母材钎焊连接的文献。本文探索不同的途经来实现两种母材的连接,最终选择真空钎焊技术结合两步法成功实现SiC陶瓷和2219铝合金的连接。首先,探索了直接用铝基钎料在不同的钎焊温度和不同的保温时间下连接SiC和2219铝合
球墨铸铁由于具备良好的强韧性,一直被广泛应用于重型机械领域某些零部件的制造。随着现代工业的不断发展,球铁领域的研究人员一直专注于开发具有更高拉伸和疲劳强度、同时具有较好韧性的球墨铸铁,尤其是在铸造状态下直接获得高强度、高韧性。众所周知,球铁的凝固特性、铸件自身的结构、浇注系统和补缩冒口的设置等众多因素将不可避免地使铸件内部产生残余应力;存在于铸态铸件内的残余应力会对随后的加工和使用带来一定的影响。
随着我国航空航天技术的发展,作为运载火箭上面级的通用平台,大尺寸钛合金环形燃料贮箱的研发生产需求已极为迫切。目前,大尺寸钛合金环形燃料贮箱采用多段环壳件拼焊的方法制造,而其环壳件具有复杂曲面结构和极高的装配精度要求,采用传统热成形工艺存在吸氧吸氢、生产周期长、设备与制造成本高等问题。脉冲电流辅助拉深成形工艺可以利用焦耳热效应和电致塑性效应在环壳拉深过程中有效降低成形载荷、提高成形极限,同时能够实现
<正>李先生今年65岁,他退休前从事管理工作,应酬较多,体形从中年时期开始逐渐发胖,现在身高175厘米,体重却达到90千克,腹部肥满松软,腹围达到96厘米。李先生性格安静,不喜欢运动,明显发胖后感到身体沉重,更加不愿意运动了。他的面部和额头部位出油很多,还常常出汗,出汗后并不觉得爽快,
有机无机卤化物钙钛矿由于具有带隙可调、吸光系数高、激子结合能低、载流子扩散长度长等优点而受到广泛关注。随着制备工艺及器件结构的不断优化,钙钛矿电池(PSCs)效率在短短十余年间迅速提高到25.7%,显示出良好的发展前景。目前高效PSCs大多是基于正式(n-i-p)结构,传统空穴传输层材料Spiro-Me OTAD价格昂贵,稳定性差,难以大面积制备,限制了商业化应用。而基于NiOx无机空穴传输层的反
随着我国交通运输、航空航天等领域对新型装备轻量化要求的不断提高,高强铝合金复杂筋板构件因其具有强度高、刚性好、质量轻、承载能力强等特点,因此在装备关键结构件中使用了越来越多的高强铝合金。高强铝合金塑性差、成形温度范围小,锻造成形难度大;而筋板类构件往往结构复杂,锻造成形时易出现成形载荷大、型腔充填不满、流线紊乱等缺陷。因此研究和开发高强铝合金复杂筋板构件的塑性成形工艺,提高构件成形质量,是现代装备
Ti2Al Nb基合金由于具有低密度、高强度等性能优点被广泛应用于高超音速飞行器、先进战机、空天飞机等重大战略航空航天领域。但随着科技发展日新月异,传统金属性能无法满足设备需求,亟需创新研发高效轻量化新材料。梯度结构材料由于能够打破传统强塑性限制,实现材料强塑均衡性和服役性能的大幅提升,发展前景优异。为此,本文以充分挖掘Ti2Al Nb基合金性能潜力为研究目标,提出了旋转梯度挤压制备高性能梯度结构
本文的研究对象是用于某主战坦克高速风扇的铝合金散热叶轮,采用现有的制造工艺不能满足叶轮高转速的性能及寿命要求,甚至出现了超速测试时叶轮碎裂的严重事故。究其原因,主要是模态共振或铸造缺陷引起的疲劳破坏。因此,亟需研究适宜的铸造成形工艺,避免或消除铸造缺陷,使得生产出的叶轮零件符合各类性能要求。本文通过理论分析与数值模拟相结合的方法,分析了叶轮的结构特点,设计了低压熔模铸造和消失模铸造两种工艺,并优化
为了提高仓储物流自动化与智能化水平,达到物流搬运行业提高工作效率与减少生产成本的目的,着力于设计一套基于STM32的智能物料搬运控制系统,使机器人实现行进控制、循迹定位、颜色及二维码识别、物料抓取与精准码垛等功能。根据设计需求进行分析,文中明确了物料搬运机器人的开发功能,将机器人设计划分为结构设计、电路设计、控制系统、视觉检测四个部分。为智慧物流加工行业解决人工劳力搬运分拣以及低智能机器低速低效搬
高速切削刀具是降低能耗和加工成本,提高生产效率和加工质量,推动机械制造产业升级的关键工具之一。作为切削刀具材料,Ti(C,N)基金属陶瓷具有较高的硬度、强度和耐磨性,以及良好的高温性能、导热率和低密度等优点,在切削加工中表现出了良好的高速切削性能。然而,Ti(C,N)基金属陶瓷刀具还存在着强韧性不足的缺点,在使用过程中容易出现崩刃、碎裂的情况。为了进一步提高其应用范围,在不降低硬度的前提下提高强韧