论文部分内容阅读
小波变换对一维分段光滑函数具有很好的非线性逼近性能,能稀疏的表示一维信号。但对于二维或高维的情况,由一维小波的张量积张成的可分离二维小波变换,只能捕捉含“点”奇异的信息,对含曲线奇异信息的处理存在一定的局限性。小波的这些局限性表明在处理高维信号时需要提出更有力的表示方法。以曲波(Curvelet)变换和轮廓波(Contourlet)变换为代表,新的图像表示系统X-let,也称多尺度几何分析,对含光滑曲线奇异的二维分段光滑函数,具有近似最优逼近的性能,可以高度反映方向性和各向异向性(anisotropic)。
多尺度几何分析的发展给图像处理及高维数据分析带来深刻的影响。但目前的模型主要以自然图像的简化模型为基础进行分析,与真正的自然图像还相差甚远,本文采用直方图方法估计曲波域和轮廓波域的边缘分布,分析联合分布统计信息,对各层子带系数进行建模,建立了基于曲波域和轮廓波域的统计模型:广义高斯模型和隐马尔可夫模型,这些模型都能够有效地描述变换域系数在尺度间,尺度内和方向间的统计相关性。广义高斯模型的优点在于其参数估计法简单有效;隐马可夫模型不仅包含了单个系数边缘分布的概率密度函数,而且包含了各尺度系数之间地统计相关性,便于对更加复杂的图像进行处理。将广义高斯模型应用于基于visTex的自建纹理图像库,采用矩匹配估计法,提取模型参数集,运用K-L距离计算图像间的相似度。对800幅纹理图像进行检索,该方法比传统小波方法的平均检索查准率高出约2%到10%不等。为进一步测试和比较模型的有效性,将两种模型应用于基于VisTex的自建纹理图像库,对640幅纹理图像进行检索。实验结果表明,两种建模方法各有其优越性和通用性,可为基于内容的图像搜索引擎设计提供算法支持。
另外,本文还对图像的旋转不变性问题进行讨论,给出一种基于轮廓波域的旋转不变纹理描述算子。对轮廓波变换后的系数进行处理,提取子带香农熵作为特征向量,然后对各个尺度的特征向量进行离散傅立叶变换,得到旋转不变的纹理特征。并利用傅立叶谱的对称性,将特征向量进一步降维。最后采用支持向量机和欧式距离对纹理图像进行分类。在包含1456幅图像的自建图像库中进行分类实验,结果表明该方法改进了导向纹理的描述,在低计算复杂度的优势下,能获得较好的分类性能。