纳米多孔非晶合金的制备及其催化性能研究

来源 :华中科技大学 | 被引量 : 0次 | 上传用户:wyp345
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
纳米多孔金属材料具有大比表面积以及优异的催化性能,在石油化工以及能源领域具有广泛的应用前景。目前,纳米多孔合金材料主要采用去合金化技术制备。然而,对晶态材料而言,其合金元素形成固溶体的范围较小,因此形成的纳米多孔材料种类比较少,多数为贵金属材料(如Au, Pt),增加了实际工业应用的成本。相比之下,非晶态合金中原子长程无序排列元素成分分布均匀,以亚稳态存在,表面处于活化状态,因而具有异常优异的表面特性,是制备纳米多孔合金的较好的前驱体材料。本文使用感应熔炼、铜模喷铸技术制备了Mg65Cu25Gd10及Pd40Cu30Ni10P20非晶合金条带,采用化学以及电化学去合金化技术制备不同孔径大小的纳米多孔非晶材料。采用X射线衍射仪(XRD),差示扫描量热仪(DSC),扫描电子显微镜(SEM)以及能谱分析(EDX),比表面积测量仪(BET),电化学工作站以及高效液相色谱(HPCL)等测试手段对所制备的合金条带微结构及其催化性能进行了系统研究。利用化学去合金化技术,通过调控不同的硫酸溶液浓度以及不同的腐蚀时间制备出不同孔径大小(20,30与50nm)的纳米多孔合金。自由腐蚀后,合金中活性高的Mg和Gd均被腐蚀掉,得到具有双连续通道的纳米多孔铜结构。腐蚀液浓度对纳米孔径的尺寸影响更为显著。纳米多孔非晶条带表现出高的苯酚催化降解性能,20min内对苯酚的降解率达到99%,原始非晶条带降解性能的2-4倍。这得益于纳米多孔合金更大的比表面积。此外,纳米多孔的孔径大小对合金的催化性能有显著影响,虽然孔径尺寸(50nm)较大的样品具有相对较小的比表面积,却表现出更高的催化活性。分析认为这主要是:纳米孔径和润湿性行为对苯酚降解效果都有影响,即孔径较大的样品接触角比较小,表面润湿性使固液接触面积扩大;孔径较大导致反应扩散更为顺利。纳米多孔非晶催化氧化苯酚的最佳反应条件为:H2O2浓度为0.4mol/L;反应温度为60℃。深入探讨了纳米多孔非晶条带对苯酚的降解机理:首先,过氧化氢与纳米多孔材料表面铜原子相互作用产生羟基自由基;然后羟基自由基进攻苯环上电子云密度较大的临对位形成邻苯二酚或对苯二酚,接着这些中间产物被进一步氧化成为苯醌;最后,在羟基自由基作用下进一步形成有机酸,最终被氧化成为CO2和H2O。利用电化学去合金化技术,通过调控腐蚀时间制备出不同孔径大小的纳米多孔Pd40Cu30Ni10P20合金。腐蚀时间比较长时,纳米多孔结构更加均匀。研究了纳米多孔非晶样品在碱性条件下对甲醇的电催化氧化性能。研究结果表明:纳米多孔Pd基非晶材料具有十分优异的甲醇电催化性能。腐蚀时间最长(120min)的样品具有最优性能,其具有最大的电化学活性面积(44.54m2/g),并且在0.5M KOH+1M CH3OH溶液中对甲醇的电催化氧化性能最好,正向峰电流密度(jf)为178.17mA/cm2,逆向峰电流密度(jb)为34.63mA/cm2,抗CO中毒能力(用jf/jb表征)为5.1。而未经处理的Pd基非晶合金的活性面积为1.86m2/g,jf与jb仅为0.58mA/cm2和0.03mA/cm2。此外,纳米多孔非晶还具有高的稳定性与循环性能,经过5次循环后,其电流密度仅下降6%。因此,这种纳米多孔非晶材料在直接醇类燃料电池电极中具有潜在的应用前景。
其他文献
现阶段,我国的房屋建筑工程建设有了很大进展,在房屋建筑工程中,大体积混凝土结构的应用十分广泛.在房屋建筑工程中通过混凝土材料构建的混凝土结构能够提升建筑整体结构质量
吸附脱硫技术是一项非常具有发展前景的汽油脱硫新技术,已成为国内外的研究热点.与加氢脱硫比较,它能在不损失辛烷值的同时实现深度脱硫,投资成本及操作费用低.汽油吸附脱硫
印染和染料废水色度大,有机物浓度高,组分复杂,难生物降解物质多;含有大量的无机盐、硫化物及有毒成分如硝基化合物、胺基化物以及铜、铬、砷等元素,具有很大的生物毒性,属于难处理
论文通过采用快速原型的软件工程原理与方法,经过多次反复修改,确定图形平台的基本功能需求、性能需求;利用面向对象的程序分析、设计、实现手段,开发了基于OpenGL的图形支持
期刊
层状LiNi1/3Mn1/3Co1/3O2锂离子电池正极材料具有比容量高、安全性能好、经济环保等优点,引起了科研工作者的广泛关注,被认为是LiCoO2最佳的替代材料。本研究主要讲述一种自牺
碱集料反应是导致混凝土耐久性失效,过早地失去使用价值、缩短寿命的重要原因之一.碱硅酸反应作为最主要和最普遍的碱集料反应类型,其预防措施的研究一直是混凝土耐久性研究
本文以LaCo0.6Ni0.4O3-(LCN)作为阴极接触材料(CCM),研究了其一系列性能。制备LCN时以聚乙烯醇(PVA)为高聚物,通过高聚物诱捕法得到了LCN前驱体,将前驱体分别在800°C及1100°C下煅
期刊
随着工业发展,环境污染问题越来越严重。尤其是以甲醛等为主的室内空气污染严重危害着人们的健康。光催化半导体材料在光的激发下能将光能转变为化学能,有效分解矿化污染物,且具