【摘 要】
:
钛合金因其具有密度小、比强度高等优异性能常用于航空航天领域的结构零件的制备。对于螺钉、榫结构等紧固类结构件,服役过程中产生微动磨损,进而导致疲劳断裂,严重影响了钛合金构件的安全性能。钛合金表面改性防护一直是重要的研究方向,目前激光冲击强化技术作为新兴的表面强化技术近些年已经用来提高钛合金的微动性能。前人研究报道主要关注激光冲击处理工艺(LSP)对疲劳性能影响,但对接触区域摩擦磨损鲜有报道,微动接触
论文部分内容阅读
钛合金因其具有密度小、比强度高等优异性能常用于航空航天领域的结构零件的制备。对于螺钉、榫结构等紧固类结构件,服役过程中产生微动磨损,进而导致疲劳断裂,严重影响了钛合金构件的安全性能。钛合金表面改性防护一直是重要的研究方向,目前激光冲击强化技术作为新兴的表面强化技术近些年已经用来提高钛合金的微动性能。前人研究报道主要关注激光冲击处理工艺(LSP)对疲劳性能影响,但对接触区域摩擦磨损鲜有报道,微动接触界面的磨损对疲劳性能具有重要影响。本文开展了激光冲击钛合金微动磨损行为研究,探究了激光冲击强化技术对钛合金表面完整性的影响,重点分析了分析不同位移幅值下激光冲击强化对钛合金微动磨损性能的影响,深入解析了激光冲击参数对微动磨损特征的影响规律,主要结果如下:激光冲击强化使钛合金表面完整性发生明显改变。引入了表面粗糙度、表层硬化层、表层残余压应力、晶粒细化等因素。随着冲击次数增加,钛合金表面硬度从324HV升至403.6HV、440.2HV,表面残余应力提高至-510MPa、-604MPa,应力层深度增加,晶粒尺寸发生一定程度细化,表面粗糙度从原始基体的0.165μm增加至0.220μm、0.344μm。搭接率主要影响钛合金的粗糙度变化,2次冲击下,钛合金随着搭接率增加,粗糙度从0.367μm降至0.344μm、0.283μm,逐渐减小。激光冲击强化处理对磨损性能的影响与位移幅值密切相关。当位移幅值较小时(25μm和50μm),与原始试样相比,LSP强化后,钛合金的摩擦系数明显增加,表面粘着现象加剧,粘着层保存较好,亚表层裂纹不易扩展,粘着磨损严重。当位移幅值较大时,LSP处理可以减小摩擦系数,减小磨损体积,降低磨痕剥落坑的坡度,抑制裂纹向内扩展的倾向,同时细化磨痕边缘区域的磨粒,减轻磨粒磨损,极大程度地提高了钛合金的微动磨损性能。激光冲击工艺参数(搭接率、冲击次数)影响其抗微动磨损性能。随着冲击次数和搭接率的增加,钛合金磨损体积减小,抗微动磨损性能提高。随着激光冲击强化次数增加到2次,磨痕中心区域剥层磨损现象减弱甚至消失,边缘区域磨粒尺寸减小,氧化磨损程度加重,形成致密的第三体层对基体进一步保护,磨粒磨损减弱。随着搭接率的增加,材料表面剥层现象也略有缓解,表面压实区域碎化现象加剧。磨损性能的不同与表面完整性的差异存在密切关系。
其他文献
随着航天航空技术的快速发展,未来对于尾喷管的性能要求更加严苛。为了提升发动机效率,尾喷管承受的温度载荷越来越大,气膜冷却技术成为保护壳体不受高温破坏的有效方法之一。其中战斗机、歼击机等军用飞机的发动机对于气膜冷却的要求更加严格,由于飞机上发动机的工作环境有限,可供使用的冷却气体非常少,同时基于轻量化设计的大趋势,还对尾喷管冷却的结构设计和重量有一定的要求。因此,针对尾喷管气膜冷却结构设计研究,如何
碳纤维与树脂基体间热膨胀系数差异大和树脂强度低、脆性大的弱点,是造成航天复合材料低温燃料贮箱失效的一个主要原因,威胁航天器的安全。因而,急需为复合材料贮箱研发同时具有高强度、高韧性和低热膨胀系数的基体材料。考虑到氧化石墨烯(GO)具有高强度、低热膨胀系数和表面具有活性含氧基团等优点,本研究提出开发新型改性GO增强环氧树脂体系。在传统的GO-环氧树脂体系中,通常通过在GO表面接枝活性基团使其与环氧树
减少黏性摩擦阻力是一个十分重要的工作,黏性摩擦阻力主要由壁面黏性切应力的分布决定,壁面黏性切应力也经常用来对湍流边界层内的参数进行无量纲化分析,而壁面黏性切应力测量难度较大。本文基于双层热膜技术发展了一系列的免标定壁面黏性切应力测量方法,并对这些方法进行了实验验证。首先本文通过理论推导认为双层热膜产生的焦耳热与来流角度余弦的三分之一次方应该呈正比,在此基础上发展了利用两个互相正交放置的双层热膜传感
旋翼无人机凭借其高度的机动性和灵活性被广泛应用于军事、民用以及科学研究等领域。鲁棒且高效的无人机目标感知技术可以极大地提升无人机执行任务的能力和效率。以震后救援场景为例,小型旋翼无人机可以通过狭窄通道检测与自主穿越,替代救援人员进入建筑物内部,并利用人体目标检测和姿态估计技术,感知受困人员并投放补给品,从而在灾后第一时间实施救援工作。针对上述研究背景,本文主要开展小型多旋翼无人机狭窄通道检测与自主
变弯度机翼是变体飞机的实现关键技术之一,机翼弯度的变化可以带来增加飞机操控性、缩短起降距离、改善升阻比、增加航程、减小能耗等优点。目前,在传统民航客机中使用襟翼、副翼达到改变机翼弯度的目的,但传统结构的变形不连续以及质量较大,所以本文提出一种基于柔性结构的变弯度机翼后缘的结构设计方案并对其变形性能展开研究分析。本文针对柔性结构在变弯度机翼中的应用,基于实现变弯度机翼变形的目的,提出一种基于鱼骨柔性
多电飞机(More Electric Aircraft,MEA)已成为当今航空领域的研究热点。目前多电飞机多采用高压270V直流电作为主电源,为大功率机电作动器(Electro-mechanical Actuator,EMA)提供动力。无刷直流电机(Brushless DC Motor,BLDCM)具有效率高、功率密度大、可靠性高等优点,成为多电飞机上襟翼、缝翼、副翼、全电刹车、舰载机机翼折叠、起
随着人类科技的进步以及科研和商业需求的演变,大型航空航天结构的研发成为了航空航天领域极为重要的一部分。较大的外形尺寸为这些结构的动力学特性相关测试试验带来了极大的挑战,通过全尺寸试验来获得结构的动力学特性会受到试验成本和试验环境的制约。因此依据原始结构,建立满足一定动力学相似关系的缩比模型替代原始结构开展模型试验是现阶段能够采用的一种具备可操作性与可实现性的有效方法。而且在某些模型设计中,出于不同
螺栓连接结构广泛应用于工程机械、航空航天等诸多领域。航空发动机转子试车及服役过程中,作用下螺栓连接结构的可靠性影响航空发动机关键部位连接稳定性、转/静子服役稳定性的关键因素之一。因此,探究螺栓在复杂外部载荷下的松动机理对航空航天的发展具有重要意义。本文以探究复合载荷下的螺栓连接结构松动规律为研究目的。首先,对螺栓头下端面、被连接件结合面及螺纹副接触面的在复合载荷下受力情况进行分析,结合复合载荷作用
高超声速飞行器在以高马赫数飞行时,由于气动加热现象,其表面温度通常可达3000K以上,为了保护内部仪器的安全,对其进行热防护非常重要。由于多孔介质具有轻质、隔热性能好等诸多优点,在热防护系统中得到广泛的应用,常用于飞行器尖端作为烧蚀材料以及用作发动机主动冷却系统的隔热材料。由于多孔介质内部结构的复杂性以及随机性,为了更好地描述其传热性能,通常引入等效导热系数。现有方法在预测多孔介质等效导热系数时,
反分析与优化设计广泛存在于航空航天的各个领域,尤其在飞行器结构中复合材料的复杂力学性能评估以及超燃冲压发动机进气道结构设计等工作。本文基于梯度优化算法对复合材料空间非均质力学参数辨识与进气道形状优化设计进行分析研究,具体内容如下:在非均质弹性力学问题中,基于边界单元法离散二维、三维数值模型,并结合径向积分法准确评估了空间非均质弹性力学的几何变形与位移场,相比于有限单元法与有限差分法等,径向积分边界