论文部分内容阅读
太阳能是一种可再生清洁能源,其储量巨大,取之不尽,用之不竭,对环境无污染,对它的应用研究已成为今后人类能源发展的主要方向之一。利用光伏效应实现并网发电是太阳能利用的重要形式,而太阳电池是光伏系统的核心,其产量也得到快速发展,过去10年,每年以超过30%的速度增加。但是,与火力发电和水力发电相比,存在发电成本高的问题,要解决这个问题,关键是要降低太阳电池的生产成本和提高电池的光电转换效率。CuInS2(CIS)是一种重要的Ⅰ-Ⅲ-Ⅵ2族半导体化合物材料,由于具有与太阳光谱非常匹配的禁带宽度(1.55 eV),光吸收系数高(>105cm-1),化学稳定性好,低毒性等优点,使其成为非常有潜力的一种太阳电池吸收层材料。从降低薄膜的制备成本方面考虑,近年来,电沉积、喷雾热解、涂覆技术、丝网印刷等非真空、低成本技术得到一定的应用发展。其中,涂覆法和丝网印刷技术都需以黄铜矿相CIS粉末为前驱体,并且单源蒸发和近空间升华法中也使用CIS粉末来制备高质量的CIS薄膜。为此,论文使用真空烧结法,系统地研究了CIS粉末的烧结合成。在CIS薄膜太阳电池的光电转换效率方面,以其为吸收层的太阳电池的理论效率高达27%-32%,而文献报道的光电转化效率却只有12.2%,电池的效率存在很大的提升空间。电池吸收层的纳米化有利于增加吸收层对光的吸收,并且能促进光生载流子的分离和传输,是提高电池效率的有效途径。对于CIS薄膜太阳电池结构,越来越多的研究者使用Mo薄膜作为CIS基薄膜太阳电池的背电极材料,这主要是由于Mo薄膜具有良好的热稳定性、低电阻率以及其在制备过程中易与上层CIS薄膜形成良好的欧姆接触。作为薄膜电池结构中的背电极材料,Mo薄膜性能的好坏直接影响吸收层CIS薄膜的结晶取向、表面形貌及界面性能,进而对电池性能产生重要影响。目前文献报道的转换效率最高的电池也是以Mo薄膜作为底电极的。基于以上所述,论文主要在直流磁控溅射法制备Mo薄膜、真空烧结法合成CIS粉末、单源热蒸发法制备CIS薄膜、固态硫化法制备CIS薄膜和固态硫化法制备新型CIS纳米棒阵列等方面开展研究工作,并取得了一些研究成果。1.改装了一套直流磁控溅射装置,并运用该装置系统地研究了溅射工艺对Mo薄膜的沉积速率、结构、形貌及电学性能的影响。溅射过程中,当基片温度为150℃时,薄膜获得(211)晶面择优取向,而在其它温度条件下,样品则为(110)晶面择优取向。2.以Cu、In、S粉和CuS、In2S3粉为原料,真空烧结合成CIS粉末。球磨Cu In、S粉的混合物为前驱体,在10-1Pa的真空环境下,350℃低温烧结合成黄铜矿相CIS粉末,粉末的颗粒尺寸大约为250nm,适用于涂覆法及单源蒸发法制备CIS薄膜。3.以合成的CIS粉末为原料,采用单源热蒸发技术在钠钙玻璃基片上沉积薄膜,样晶经250℃-450℃退火处理后,获得了高(112)晶面择优取向的CIS薄膜。电学和光学性能测试显示:薄膜的导电类型为N型,禁带宽度为1.50eV。4.以钠钙玻璃为基底,蒸镀Cu/In薄膜,DSC分析显示薄膜合金化时经历两个相变过程,两相变点温度分别为153℃和314℃,进一步的XRD测试表明第一次相变时生成单斜晶系的Cu11In9,第二次相变则生成三斜晶系的Cu7In3。然后分别硫化Cu11In9和Cu7In3前驱膜均能获得P型CIS薄膜,薄膜的禁带宽度分别为1.34eV和1.39eV。其中硫化Cu7In3前驱膜获得的薄膜中还含有少量CuxS二元杂相。另外,以玻璃/Mo为基底比以Mo箔片为基底制备CIS薄膜的结晶性能更优良。5.将固态硫化法应用于新型CIS纳米棒阵列的制备。该结构中纳米棒阵列垂直生长于薄膜之上,组份测试表明薄膜接近CIS的标准化学剂量比。用该结构膜作太阳电池吸收层时,可增加吸收层对光的吸收,促进载流子的分离与传输,从而有望开发出高效太阳电池。另外,论文还就Ⅰ-Ⅲ-Ⅵ2族半导体材料CuInSe2化合物进行了一些研究,真空烧结合成了CuInSe2粉末,使用固态硒化法在Mo箔片上制备了CuInSe2薄膜。总之,论文围绕太阳电池的低成本和高效率,在太阳电池材料CIS粉末、薄膜、纳米棒阵列和Mo薄膜等方面展开研究,并取得了一定的研究成果。