论文部分内容阅读
随着测序技术的快速发展,近年来多个茄科物种的基因组数据相继被释放,这为全基因组范围鉴定抗病基因和物种间比较基因组学的应用提供了平台。植物中大部分(80%)抗病基因属于NBS-LRR类。本研究通过隐马尔科夫模型(Hidden Markov Model,HMM)和BLAST的方法从栽培番茄Heinz1706、野生番茄LA716、栽培马铃薯DM1-3、栽培辣椒Zunla-1、野生辣椒Chiltepin和栽培烟草TN90中分别鉴定出463、485、1,152、1,665、2,042和374个NBS-LRR类抗病基因。相比已报道的结果,本研究从番茄Heinz1706和马铃薯DM1-3中鉴定出69和397个新抗病基因。辣椒基因组内(尤其是野生辣椒Chiltepin)的抗病基因数目在已报道的二倍体物种中是最大的。使用BLSATN的方法(E值为1e-10),我们将本研究从茄科物种鉴定出的绝大多数抗病基因(>92%)划分到了87个抗病基因亚家族中,其中16个亚家族为TIR-NBS-LRR(TNL)类,71个为non-TNL(n TNL)类。分析表明,TNL类抗病基因家族的基因结构较n TNL类抗病基因亚家族的基因结构更保守。本研究以番茄基因组的抗病基为对象构建了147个VIGS沉默载体,覆盖番茄Heinz1706中81个抗病基因亚家族的64个,为未来番茄抗病基因的克隆提供了新的途径。虽然茄科物种间抗病基因数目有巨大的差异(如野生辣椒Chiltepin中有2,042个抗病基因而栽培番茄Heinz1706只有463个),但是各个物种内抗病基因亚家族的数目却差不多(如野生辣椒Chiltepin和栽培番茄Heinz1706分别包含83和81个抗病基因亚家族)。进一步分析发现,茄科物种间抗病基因数目的差异主要是由一些大的抗病基因亚家族造成,例如辣椒中22个大的抗病基因亚家族包含全基因组约80%的抗病基因,其中在辣椒Zunla-1和辣椒Chiltepin中最大的5个抗病基因亚家族(Rpi-blb2、BS2、SL-0273、Sw5-c和I2)分别包含832(50.0%)和1,027(50.3%)个抗病基因同源体,而这5个抗病基因亚家族在番茄Heinz1706、番茄LA716和烟草TN90却只含有84(18.1%)、95(19.6%)和73(19.5%)个抗病基因同源体。辣椒中最大的两个抗病基因亚家族(Rpi-blb2和BS2)在辣椒属和茄属内所包含的抗病基因同源体数目相差巨大,例如BS2抗病基因亚家族在两个辣椒基因组内共包含626个同源体,但是在番茄和马铃薯内只包含10个同源体。进一步分析发现这两个抗病基因亚家族的大部分同源体在茄科物种内没有序列交换,表明它们独立进化。抗病基因位点I2/R3在茄科内是个抗病基因聚集的热点,很多抗病基因被定位在此位点,其中包括番茄中的Ty-2、SM,马铃薯中的R3、R6和R7等和辣椒中的L。在本研究中,抗病基因Ty-2定位区间的一侧被定位在标记M-148200(51.63Mb)。该位点内的I2抗病基因亚家族在番茄Heinz1706和马铃薯DM1-3内分别包含36和71条同源体,数目相差近两倍。这两个基因组内的大部分I2同源体都分布在11号染色体长臂近端粒处的几个Mb区域内。根据该位点内的I2同源体的分布,可以进一步将该位点划分成9个亚位点,其中大部分的亚位点在两个基因组内所包含的I2同源体数目不同,而且有的亚位点还存在有和无的多态性。通过序列分析,我们发现番茄中的I2同源体有Type I和Type II两种典型的进化模型,但是马铃薯中的I2同源体却没有Type II类进化模式。对该位点基因结构、复制类型和进化模型的了解可能为以后从该位点克隆抗病基因提供参考帮助。文献报道马铃薯中的R3a(I2同源体)可以被mi R482切割,但是通过生物信息预测和实验验证的方法,我们发现番茄内的I2同源体可以被另一个mi RNAs(mi R6024)切割,并且可以产生21-nt的tasi RNAs。通过分析十个物种内的mi R6024序列,我们推测mi R6024是茄科特有的mi RNA家族。综上所述,本研究通过对茄科物种全基因组范围内抗病基因的鉴定、番茄抗病基因亚家族的划分、抗病基因的进化分析以及抗病基因VIGS沉默载体的构建,为茄科抗性资源的利用以及抗病基因的快速克隆奠定了基础。