论文部分内容阅读
电力变压器是电网的关键核心设备,其性能密切关系着电力系统的安全经济运行,因此准确掌握电力变压器运行水平,及时有效发现其潜在性故障,并进行准确故障定位,能有效的降低电网事故发生机率,保障供电可靠安全。针对目前电力变压器故障诊断及故障定位技术中,传统的油中溶解气体分析方法(Dissolved Gas Analysis,DGA)及电气试验的状态量判断指标过于绝对的问题,多种智能算法被引入电力变压器故障诊断与定位领域,取得了较好的效果。然而智能算法存在算法准确率受参数影响等问题,因此本文基于细菌觅食算法(Bacterial Foraging Algorithm,BFA)优秀的参数优化能力,开展电力变压器状态诊断和故障定位技术的研究。首先,本文研究了细菌觅食算法的特点、原理、算法模型及实现流程。对原始细菌觅食算法的趋化、复制和迁徙操作进行了介绍;对步长进行改进,避免了传统细菌觅食算法因固定步长而造成的收敛速度慢、跨过最优解等问题;在原理方面,本文将细菌觅食算法与智能优化算法粒子群算法(Particle Swarm Optimization,PSO)、遗传算法(Genetic Algorithm,GA)进行比较研究,分析三者的优缺点。其次,研究电力变压器的故障机理及故障诊断技术,建立了基于细菌觅食算法的电力变压器故障诊断优化模型。该模型以电力变压器油中特征气体含量的相对值作为状态评价样本,以k-折平均分类准确率为目标函数,通过细菌觅食算法寻找全局最优支持向量机参数解。仿真结果表明,细菌觅食算法对支持向量机最优参数的选取较遗传算法、粒子群算法更迅速,且优化后的模型具有更高的精确度;基于细菌觅食算法优化方法建立的支持向量机电力变压器故障诊断模型,对IEC三比值法中无法判断的数据也可进行精确诊断。通过实例分析,验证了模型的有效性。最后,在电力变压器的故障定位技术研究中,将变压器的油色谱信息和电气试验特征量结合,总结了11种故障定位特征属性变量,并依据属性变量确定了电力变压器的8个故障位置,并依此建立故障定位模型。本文以细菌觅食算法为计算工具,对故障位置进行聚类计算,根据计算结果,按照最大隶属度原则,建立了完全二叉树模型;利用7个支持向量机进行二叉树的层层分类,并基于细菌觅食算法,优化该模型参数,建立了基于细菌觅食算法和完全二叉树的电力变压器故障定位模型。通过实例证明,相较于其他智能算法,该故障定位模型能够快速的判断发生故障部位,具有较高的定位准确率。