自适应被动辐射降温材料的设计制备与性能研究

来源 :武汉理工大学 | 被引量 : 0次 | 上传用户:FIGOWEN7
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
目前,人们主要依赖空调系统来满足在建筑、汽车、数据中心、冷库等各方面的冷却需求,但是系统运行所需的制冷剂和电力严重加剧了能源消耗和全球变暖。被动辐射降温技术因其“零能耗、零污染”的特点被认为是一种极具潜力的绿色冷却手段,它的工作原理是利用地球大气窗口将物体自身的热量以红外线的形式送往深空宇宙来实现自发冷却。然而,目前的被动辐射降温材料无法根据天气条件自调节辐射降温能力,在冬季或寒冷地区无法使用,因此应用价值受到极大的限制。为解决这个问题,本文分别选择温敏水凝胶聚(N-异丙基丙烯酰胺)(PNIPAM)和双程式镍钛形状记忆弹簧(TSMS),利用其自身温度刺激响应特性,设计制备自适应被动辐射降温材料,并对其进行性能研究。基于PNIPAM水凝胶相变温度前后可调光散射的特征,本文设计并制备一种具有三明治结构的自适应被动辐射降温材料(SSTH)。从理论和实验上共同验证了SSTH的自适应被动辐射降温功能。实地测试数据表明:当环境空气温差大于6℃时,SSTH能将自身温差保持在1.2℃以内;当环境空气波动为1.4℃时,SSTH自身温度波动为0.3℃。SSTH需要在太阳光的存在下才能发挥作用,不具备全天候的自适应降温功能。基于镍钛形状记忆弹簧随温度长度可逆变化的特征,本文设计并制备一种自适应百叶窗型温控机械相变结构(TCPCS),在全天范围内,可以根据环境温度调整下方被动辐射材料的降温能力。实地测试数据表明:有和没有TCPCS的被动辐射材料全天最大温差分别为9.7℃和19.6℃。在此基础上,本文进一步改善和设计了一种同时拥有夏季制冷和冬季制热双重功能的V型TCPCS。在冬季制热户外测试中,当天峰值太阳能为582W/m~2,实测白天有V型TCPCS的被动辐射材料获得的制热能力比没有V型TCPCS的可高出20.7℃。本文设计制备的两种自适应被动辐射降温材料均具备规模化制造的潜力,在不需要能量输入的情况下,实现自适应被动辐射降温功能,填补了智能控温手段的空缺,解决了在建筑应用方面冬季使用困难的问题,可作为现有建筑环境控制系统的补充手段,向零能耗建筑迈进。
其他文献
随着化石能源的枯竭和环境污染问题的日益加重,对清洁可再生能源的开发以及能源的存储和利用提出了更高的要求。超级电容器,是能够储存和容纳一定能量的电子器件,充放电速度快,循环稳定性好,且对环境友好。纤维素作为一种天然高分子,来源广泛、成本低,通过2,2,6,6-四甲基哌啶-1-氧基(TEMPO)氧化法制备纳米纤维素进行碳化可以获得具有三维网状结构的碳气凝胶。但由于其比电容较低,限制了其进一步应用,因此
学位
锂离子电池具有容量高、体积小、环境友好等优点,是应用最广泛的储能器件之一。随着便携式电子设备的高速发展,锂离子电池也向着轻量化、灵活化发展。集流体是锂离子电池中与活性物质直接接触的部件,起着联通内部化学反应和外部电路的重要作用,对锂离子电池的倍率性能、功率密度和循环稳定性都有很大的影响。石墨烯材料具有高导电性、高化学稳定性和较小密度,是一种很有前途的集流体材料。然而,如何制备适用于集流体的高导电、
学位
随着科技的不断进步,未来燃气轮机将承受更加极端的高温工作环境。采用耐高温性能更好、质量更轻、比强度更高的碳化硅复合材料(Si C、Cf/Si C、Si Cf/Si C)是解决目前传统高温合金材料温度应用限制的一个重要突破点。针对碳化硅复合材料在高温下易与燃料燃烧产生的水蒸气发生化学反应而损伤基体性能的问题,本论文探索了适用于碳化硅表面的热/环境障陶瓷涂层(T/EBCs),通过掺入负热膨胀材料的方法
学位
混凝土具有原料来源丰富、强度高、成型方便、耐久性好等优点而得到极为广泛的应用。然而,混凝土在服役期间易因应力作用而出现损伤和开裂,导致其力学性能和抗渗性降低,严重降低其使用寿命。离子络合剂可促进混凝土中的钙离子与硅酸根、碳酸根反应,形成硅酸钙和碳酸钙,从而赋予混凝土损伤和裂缝自修复能力。为进一步提高混凝土的自修复能力,本文将离子络合剂分别与含硅酸根、碳酸根的无机化合物复合后用于混凝土,以延长混凝土
学位
高性能聚合物基介电材料因质轻、柔韧性好、击穿场强高、成本低等优点在储能领域一直受到极大关注。然而,其中的聚合物基体大部分来源于传统的化石能源衍生物,不可再生,不可生物降解,而且非碳中性,这不利于环保和社会的可持续发展。因此,在资源短缺和环境污染的现状下,开发新型可生物降解、可再生的生物质基复合介电材料具有重要的发展意义。甲壳素在地球上的储量仅次于纤维素,其在多个领域都有巨大的应用潜能,而在介电储能
学位
随着工业发展和社会进步,日益严重的能源短缺问题已经成为亟待解决的重大问题。能源发展的核心是催化技术,而催化技术的核心是催化剂,因此开发高效新型催化剂材料是实现能源可持续发展的关键。负载型贵金属催化剂是催化剂材料的重要一员,其中Pd基催化剂因其高催化性能和高化学稳定性等优点,已经成为应用最为广泛的负载型贵金属催化剂。载体材料直接决定了催化剂的催化性能。多孔载体材料是使用最为广泛的一类载体,但工业上常
学位
随着我国工业化的发展,雨水中含有的污染物质数量渐增,如果这些雨水直接渗入到地下,势必会对地下水资源造成严重污染。而透水混凝土作为“海绵城市”建设的关键材料,因其具有特殊的连通孔结构和巨大的比表面积,存在净化雨水的潜质。但透水混凝土存在净水、透水与力学性能难以协调的问题,限制了净水功能型透水混凝土的设计与应用。基于此,论文构建了净水功能型透水混凝土结构模型,并分析出影响透水混凝土力学性能、透水性能和
学位
清洁氢能源的广泛使用产生了巨大的氢气需求,在众多制氢方法中电催化制氢由于其原料存量丰富,制氢过程无污染等优点得到了广泛研究。然而铂等高催化活性贵金属因其高成本,低储量限制了其大规模的应用。因此要利用有效的手段进行改性提升非贵金属催化剂的活性,现有的改性催化剂的手段主要有:通过不同催化剂材料间的复合协同提升催化剂的析氢性能;控制催化剂的形貌暴露活性位点。但以上方法都没有改善催化剂的本征活性,而缺陷工
学位
社会经济的快速发展和城市化进程加快带来了环境污染、资源短缺、温室效应等严峻问题,人们逐渐认识到发展可持续清洁能源的重要性。碱性阴离子交换膜燃料电池(AEMFC)具有环保高效、O2还原反应速度快、可使用非贵金属催化剂、成本低等优点,受到广泛关注。然而,作为AEMFC“心脏”部件的阴离子交换膜(AEM)仍然存在离子电导率低、化学稳定性差等明显缺陷,阻碍了AEMFC的商业化应用。本文从分子结构设计出发,
学位
人胰岛淀粉样多肽(Human islet amyloid polypeptide,hIAPP)发生错误折叠与纤维化沉积在胰岛β细胞表面会诱发氧化应激、炎症等一系列生理反应,加剧II型糖尿病并引发其它疾病。研究发现hIAPP的异常折叠及纤维化与体内多尺度界面(膜结构)密切相关,前期已有大量研究揭示平坦界面上的亲疏水性、电荷、手性等物理化学因素影响蛋白纤维化的规律及相关机制。然而生物体内的膜结构大多是
学位