论文部分内容阅读
煤粉燃烧具有燃烧效率高等优点,但存在锅炉排放的大气污染物浓度高等问题。流化床燃烧具有燃料适用性广、燃烧生成大气污染物浓度低等优点,但燃烧效率较低。将煤粉燃烧和流化床燃烧的优势相互结合,充分发挥各自的优势,形成煤粉-流化床耦合燃烧,即炉膛底部为密相流化床燃烧、炉膛上部为稀相煤粉悬浮燃烧,具有负荷调节范围宽和煤种适应性广等优势,同时燃烧生成的污染物可以得到有效地控制。但是,炉膛内密相流化床与稀相煤粉炉之间的流动和燃烧能否实现相互耦合,将直接影响煤颗粒在密相流化床和稀相煤粉炉内的流动、燃烧反应和传热过程。因而,利用数值模拟技术进行煤粉-流化床耦合燃烧过程的研究将有利于加深对煤颗粒在煤粉-流化床锅炉炉膛内流动、燃烧反应和传热过程的理解和掌握,可为工程应用提供理论基础。本文以煤粉、流化床锅炉炉内流动和燃烧特性为研究对象,结合成熟的煤粉燃烧和流化床燃烧技术提出了单床和双床两种煤粉-流化床锅炉结构,开展了煤粉、流化床以及煤粉-流化床锅炉炉内流动和燃烧特性的研究,采用颗粒动学分析了颗粒在炉内流动和燃烧所遵循的规律,从多组分的角度探寻颗粒的拟温度、颗粒间压力以及颗粒间曳力等因素对气相以及不同组分颗粒运动的影响。考虑了气、固两相相间以及两相与水冷壁间的对流、辐射传热模型,分析了煤中水分析出、挥发分热解以及可燃物燃烧的全过程化学反应机理,建立了颗粒动理学-煤气化燃烧反应的流动-反应计算模型。应用颗粒动理学数值模拟了单床和双床两种结构煤粉-流化床锅炉炉内气固两相流动特性。为分析两种燃烧方式能否有机地结合并达到相互促进作用,分别探讨了底层流化风对煤粉四角切圆的影响以及流化风对上部多层横向风对流态化的影响,结果表明当风速低于1.5m/s时上行的流化风不会影响煤粉燃烧器一、二次风的切圆运动,但影响切圆形态。流化风速越大一、二次风形成的切圆半径越大,二次风形成的切圆半径小于一次风。相同流化风速下单床结构切圆半径大于双床结构。经对比分析得到流化速度为1.3m/s时,煤粉、流化床之间能够最有效地耦合并相互促进。在该流化速度下从气相速度以及颗粒相浓度等角度分析得到了两种炉型负荷比为70:30最优。应用颗粒动理学-煤气化燃烧反应的气固流动-反应计算模型分析了两种煤粉-流化床锅炉炉内燃烧特性以及污染物生成的机理。结果表明无论是单床还是双床结构炉内气固两相温度分布均匀,具有良好的传热性。由于煤粉、流化床容量设置以及两种燃烧方式的内在特点,炉膛内气固两相温度峰值位于煤粉小颗粒燃烧区,对固相颗粒浓度和相应组分反应速率分析研究发现了部分煤粉小颗粒受重力作用落入到流化床内参与流化燃烧,同时部分煤料中颗粒受上行流化风的托举参与了煤粉小颗粒燃烧,实现了两种燃烧方式的耦合燃烧。对气相组分浓度及其反应速率研究发现CO主要来源于碳的不完全燃烧,氧浓度对CH4和Tar燃烧反应速率影响极大。对污染物生成的机理研究发现NO对温度极为敏感,高温区域生成的NO浓度最大,流化床内投入的石灰石能够起到炉内脱硫的作用。采用热工性能试验和数值模拟相结合的方式对煤粉和流化床锅炉不同负荷下锅炉运行状况及燃烧特性进行了研究。热工性能试验发现煤粉和流化床锅炉在额定负荷下热效率最高,随着负荷率的下降热效率降低。将满负荷条件下煤粉和流化床锅炉热工性能试验所得数据和数值模拟结果进行了对比分析,从而验证了模拟结果的有效性。对煤粉、流化床锅炉不同负荷进行模拟研究得到炉内温度及气固两相组分的分布情况。将煤粉、流化床以及煤粉流化床锅炉特征热工参数对比分析得到了煤粉-流化床锅炉的设计方式可以实现大幅增加锅炉负荷波动范围的同时保证较高的运行效率。