论文部分内容阅读
为了解液力变矩器承载能力与结构轻量化设计潜力,包括叶片与内、外环的叶轮结构在内部流场压力载荷下的结构弹性变形、振动特性等需要进一步深入研究。因此本文采用双向瞬态流固耦合计算方法与流场压力-结构应变试验测试相结合,解决了已有静压强度计算中仅得到稳态结果的分析局限性,实现了变矩器流场脉动载荷激励与结构振动响应的内在联系分析,并开展结构轻量优化设计。建立了基于动网格的双向瞬态流固耦合分析模型。采用流体与结构分域耦合求解策略,实现了流-固分域计算与耦合数据传输。为完整表征叶轮结构所受流场压力载荷,建立了包含内环泄漏区在内的流场模型。对比冲压、铸造两种变矩器的叶轮机械结构差异,分别建立固体边界约束与流固耦合交界面。采用弹簧光顺动网格模型,实现在流场载荷引起结构变形时,流场边界网格随结构边界运动实时更新,防止流场网格运动时极易导致的负网格现象发生,实现了结构变形-流场压力的双向数据传输与耦合求解计算。通过仿真计算得到了变矩器流场压力脉动、结构振动和动应力瞬态结果。依据时均流体压力载荷分布与时均结构变形、应力分布的特征区域设定数据监控点,分析流体压力场与结构变形等随速比工况改变的变化趋势;通过频域分析得到了压力脉动载荷激励与结构振动响应的频域关系:在特定工况区间内,泵-涡交互频率同为流场压力脉动与结构振动主频,且得到泵-涡交互频率以泵轮转速、叶片数和速比为变量的近似计算公式。提出了一种变矩器封闭内流场导轮复杂叶片表面压力-应变测试方法,建立了压力-应变复合试验测试系统,实现了复杂空间表面油液压力与结构应变数据测试。在时域中验证了导轮局部流固耦合仿真计算所得压力场与结构应变结果;在频域中验证了导轮叶片表面压力脉动与结构振动主频及其与工况速比的近似关系。提出了叶栅厚度流固耦合轻量化多学科优化设计方法,建立了叶栅厚度参数化模型与优化设计平台,得到了各部位厚度对变矩器结构强度与工作性能的影响规律。考虑结构材料强度、制造工艺性约束和动载荷激励,对铸造型变矩器叶栅系统进行了结构厚度优化设计。通过优化设计实现在保证变矩器结构强度与工作性能的前提下,实现了变矩器叶栅系统的低厚度轻量化设计。