论文部分内容阅读
本文在对Casimir效应作简单综述的基础上,研究了有多个紧致额外维存在时两平行导体平板间的Casimir效应,确定了额外维的尺度范围;另外一个研究内容是活塞模型上的Casimir效应,讨论了标量场的质量和几何因素即盒子的边长之比对作用在活塞上的Casimir力的影响,并与前人的工作进行了比较。本文主要包括以下几个部分:首先,对Casimir效应的提出和Casimir效应在理论、实验上的发展及其作用作了一个简单的分析。接下来,对处理Casimir效应的过程中将要用到的数学工具—zeta函数作了一个简单的介绍。在第三章中,在Kaluza-Klein理论框架下分析具有多个紧致额外维时两平行导体平板间的Casimir效应。假定所有的额外维具有相同的尺度R ,利用Epstein zeta函数对Casimir能量密度进行正则化得到Casimir力密度并与实验结果比较,从而确定额外维的尺度范围。在第四章中,对有质量标量场中的活塞上的Casimir效应进行研究。在第五章中,对本文的研究工作进行了总结。本文的主要结论及其意义有:通过对Casimir效应的研究确定了额外维的尺度,这是从不同于以往的角度来研究额外维问题,以便与其它方法得出的结果进行比较。活塞模型在Casimir效应的研究中是一个新的模型,而且较其它模型更具有实用价值。