【摘 要】
:
横向避撞控制一直是车辆主动安全领域至关重要的研究热点,因其是降低交通事故发生率及保证车辆行驶安全性的关键技术之一。但现有大部分横向避撞控制是面向无人驾驶条件下的转向控制,而在人机共驾条件下,由于驾驶员的应激、过度、模糊、多变的操作特性,导致驾驶工况复杂,现有以转向为主的横向避撞控制难以应对。为解决这一问题,本文提出了一种面向人机共驾的车辆横向避撞控制算法,以期提高人机共驾车辆的行驶安全性和操作稳定
论文部分内容阅读
横向避撞控制一直是车辆主动安全领域至关重要的研究热点,因其是降低交通事故发生率及保证车辆行驶安全性的关键技术之一。但现有大部分横向避撞控制是面向无人驾驶条件下的转向控制,而在人机共驾条件下,由于驾驶员的应激、过度、模糊、多变的操作特性,导致驾驶工况复杂,现有以转向为主的横向避撞控制难以应对。为解决这一问题,本文提出了一种面向人机共驾的车辆横向避撞控制算法,以期提高人机共驾车辆的行驶安全性和操作稳定性。首先,本文分别对国内外关于无人驾驶车辆避撞控制、人机共驾车辆避撞控制以及驾驶员模型的研究进行了分析,阐明了现有研究的优缺点,并明确了本文研究思路和主要内容。其次,以纵向安全距离为衡量标准对比分析了驾驶员紧急避撞时可能采取的制动、转向或制动转向联合避撞策略。根据紧急避撞工况下方向盘转角随时间变化的规律,提出了紧急工况应激转向变正弦驾驶员模型。通过实车测试所采集的驾驶员在紧急避撞时方向盘转角数据对变正弦驾驶员模型中各参数关系进行确定并拟合,再验证所提出的变正弦驾驶员模型的正确性,为人机共驾车辆进行避撞控制时驾驶员应激转向建模提供依据。然后,综合考虑人机共驾车辆的行驶工况和道路环境,分析了紧急避撞过程中驾驶员-车-环境的多元约束,包括驾驶员线性转向认知约束、车辆稳定性约束和道路空间约束。在多元约束基础上,基于驾驶员应激程度设计出符合驾驶员线性转向认知的改进圆弧对接避撞路径,并考虑到平顺性要求,使用三阶贝塞尔曲线平滑处理圆弧相接处。接着,将附加横摆力矩作为控制量,建立人机共驾车辆横向控制动力学模型。设计了基于多约束模型预测控制的路径跟踪控制器,上层控制器计算出纠正驾驶员不合理应激转角输入的附加横摆力矩,下层控制器包括制动轮优选及控制策略,并在附着椭圆的约束下按轮胎垂向载荷进行制动力矩优化分配。通过对不同车轮施加合适的制动力矩,跟踪所规划的路径,实现避免碰撞和保持稳定性。再利用Simulink和Car Sim联合仿真验证了横向避撞控制算法的有效性。最后,为更进一步验证所设计的横向避撞控制算法在真实控制器中的有效性,搭建了Hi L仿真试验平台。将人机共驾车辆横向控制动力学模型加载到NI实时仿真机中,将基于多约束MPC的路径跟踪控制算法写入整车控制器中,并在不同避撞工况下进行Hi L仿真试验。结果表明,面向人机共驾的车辆横向避撞控制算法在真实控制器元件是有效可行的。
其他文献
高镍三元正极材料具有比容量高、成本低且环保等优点,但仍存在许多问题,如晶间裂纹、阳离子混排、相变、副反应等。为了广泛应用锂离子电池,满足新能源汽车日益增长的能量需求,有必要进一步挖掘三元正极材料的潜力。本论文选取单晶Li Ni0.8Co0.1Mn0.1O2为研究对象,通过将其与多晶形态的Li Ni0.8Co0.1Mn0.1O2进行对比,对材料的结构、元素价态、形貌和电化学性能等方面进行了表征分析,
铝离子电池(AIBs)由于在安全性、环境友好、资源储备量以及理论容量等多方面都具有一定优势,在储能领域有着广阔的发展前景。与传统电极材料相比,有机材料具有结构多样、资源丰富,以及环境友好等优点。尽管如此,有机材料的实际应用仍受到以下两个方面的限制:一是有机材料的溶解性高,这会导致电池容量迅速衰减,稳定性不甚理想;二是有机物固有的绝缘性,会导致倍率性能不甚理想。本文以1,5-二氨基蒽醌(DAAQ)为
青少年编程教育是培养科技创新人才的基础,在国家实现第一个百年奋斗目标的关键时期,培养有理想、有担当、有爱国情怀的新时代“后浪”,是目前中小学迫在眉睫的任务。Python作为人工智能的主流语言,以其语法简单、功能强大和丰富的第三方库成为了最受欢迎的程序设计语言之一,也是目前中小学主要学习的编程语言。但Python作为中小学课程中的“新”课,面临着专职师资少、案例资源匮乏、教学内容单一等系列问题,并且
使用新能源汽车是应对人类目前所面临的能源危机与气候变化挑战的重要举措,将有助于我国达成“碳中和”的目标。其中,新能源汽车包括纯电动汽车、增程式汽车、燃料电池汽车等。而燃料电池汽车又由于其排放为为水,几乎无污染,同时氢气的能量密度较高,因此具有较大的发展前景。但由于低温质子交换膜燃料电池受到水淹与膜干问题的影响,因此需要双极板流场改进以减轻这一问题并提高燃料电池效率。而冷启动问题也阻碍了燃料电池汽车
智能汽车在减轻驾驶负荷、提升主动安全性、改善交通效率以及降低能源消耗等方面具有巨大潜力,受到行业研究人员的广泛关注。轨迹跟踪控制是实现智能汽车自动驾驶的重要支撑技术之一,其在车辆底层执行机构的作用下,调节前轮偏角、车轮制动力等控制参数,使智能汽车以期望速度精准稳定地跟踪参考轨迹。由于智能汽车行驶条件复杂多变,特殊工况下车辆非线性和多维运动耦合特征显著增强,而现有研究中常规的车辆机理分析建模过程通常
为满足市场对动力电池的需求,开发高能量密度、长循环寿命、低成本、高安全性的锂离子电池正极材料至关重要。高镍三元材料因其比容量高、成本低廉等优点备受关注。然而,Li+/Ni2+混排、相变、界面反应、氧析出、微裂纹等问题制约其商业化进程。针对上述问题,本工作首先从改善样品的结构稳定性能及提高其电化学性能出发,采用便捷的一步式高温固相合成法,设计选用金属氧化物(Ta2O5)和快离子导体(LiTaO3)修
近年来,太阳能和风能等可持续能源的间歇性性质引发了人类对开发新能源的思考,日益严重的能源短缺危机和随之而来的环境污染问题推动了清洁能源的发展。氢能源相对于传统的化石能源,拥有着高的利用率和高能量密度。同时,氢能源因其零二氧化碳排放和高的环境相容性被公认为是传统化石能源的有效替代品。电催化分解水产氢是大规模生产氢能的一项关键技术。电催化分解水是由两类半化学反应所构成,也就是阳极的析氧反应(Oxyge
全面提升安全舒适性,降低能源消耗,改善交通效率等切实需求为智能汽车发展带来新的机遇与挑战。其中建图定位技术与感知、预测、规划等模块相互耦合,是实现智能汽车高级别自动驾驶的必要条件之一。针对在城市场景下卫星定位导航容易遭受信号遮挡及多路径效应影响,而基于单一传感器的状态估计方法精度低,环境适应能力不强的问题,本文研究了多传感器融合的状态估计及特征地图构建与定位算法,首先构建了视觉-激光-惯性紧耦合的
改变传统的教学管理模式,建立与新课程要求相适应的新教学理念和新的教学方法,促进学生发展的学校教学管理体系。
拖拉机是农业机械化发展过程中最重要的动力机械,目前正面临着全球石油资源短缺和污染排放两大问题。根据国家农业装备升级有关政策的指导,研发新一代节能型拖拉机将成为未来的研究重点。拖拉机作业工况复杂,需从事田间作业和道路运输,具有工作环境复杂,自适应性较差和动力匹配不佳的特点。针对上述情况,本文根据目前热门的液压机械变速器(Hydro-mechanical transmission,HMT)与混合动力技