复合材料层合板挤压失效预测与增强设计

来源 :南京航空航天大学 | 被引量 : 0次 | 上传用户:simonhill
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
层合板挤压失效是限制复合材料机械连接力学性能与整体结构系统承载效率的关键因素。然而,由于其复杂的失效机理以及对设计参数的高敏感性,发展对应的可靠且准确的失效分析方法是极为困难的。本文旨在系统性地发展并验证高保真度高可靠度的复合材料机械连接挤压失效虚拟试验技术,围绕挤压失效机理从物理观测、失效预测模型构建与验证以及增强设计三个方面开展研究工作。
  首先,结合多种测量和检测手段(数字图像相关技术、二维X-ray造影和切面显微观测)对含有不同铺层比例/顺序和单层厚度的复合材料层合板销钉挤压失效机理与失效过程进行了系统性多维度地表征。认识到复合材料层合板挤压失效是一个相当复杂的多模式损伤起始与交互耦合扩展的过程,包括三维应力状态下的纵向压缩失效、断裂面角度非唯一的多模式混合横向失效、多模式混合的层间失效、相邻层约束下的多折曲带现象、多模式损伤交互产生的跨越多层的宏观剪切带、以及所伴随的面内面外的大变形与断裂面上的大滑移。同时发现,多向层合板销钉挤压失效掉载后均存在一个较稳定的载荷平台,不同的铺层比例显著影响着各式损伤占比和整体损伤形貌,单层厚度的增加会显著降低层合板的挤压强度。
  随后,根据试验观测,构建了基于物理机制的纤维增强复合材料层合板失效预测模型。材料模型中考虑了所有的层内层间介观损伤模式、多向层合板中的就位效应、损伤起始前的层内剪切非线性行为以及首次考虑了螺栓连接中层板在侧边约束下较为显著的层内和层间粘聚-摩擦行为,采用基于应力不变量的三维唯象失效准则和基于扩展机理的连续损伤模型(纵向双线性损伤模型和横向三维弥散裂纹模型)以模拟层内损伤,并采用离散型粘聚区模型以模拟层间损伤。数值模型基于有限元方法,采用裂纹带模型和沿纤维向划分网格的策略,以减缓局部连续损伤模型在处理应变软化问题时对网格尺寸与划分走向的依赖性。基于本文中的销钉挤压试验和文献中多构型多几何尺寸的螺栓连接试验对所构建的模型进行了验证,预测结果与试验结果在宏观力学响应和介观失效机理两方面均吻合较好,证明了模型的准确性和通用性,同时其计算成本可为工程应用所接受。
  最后,基于对挤压失效机理的试验与仿真研究,从抑制损伤起始与扩展的角度出发,进行了复合材料单/双剪螺栓连接的局部层级混杂增强设计,并基于所发展的数值模型对设计方案进行评估,发现所提方案对拐点载荷和极限载荷的增强效果分别可达 59.21%和 50.77%,同时增强方案中介观失效机理的变化符合设计预期,证实了设计思想的合理性和有效性。
其他文献
航空涡扇发动机被誉为现代工业技术皇冠上的明珠,是关系国家军事安全、国民经济发展的战略性高科技产品,是制约我国航空业发展的主要“瓶颈”之一。现代航空涡扇发动机正朝着大涵道比、大推力、低油耗等方向不断发展。颗粒增强铝基复合材料具有密度低、比强度高、耐磨损、抗疲劳性能好等优点,预期将在下一代涡扇发动机大尺寸风扇叶片的减重/增效方面发挥重要的作用。原位自生型TiB2颗粒增强铝基复合材料(TiB2/Al复合
学位
凝相铝/三氧化二铝液滴碰壁现象是采用含铝复合推进剂的火箭发动机内特有的一种多相流动现象,其碰壁过程及结果类型对发动机内绝热层的热防护性能、喷管的抗烧蚀性能、潜入式喷管背壁区的熔渣沉积现象以及发动机内两相流动特性都会产生一定影响。为了保障发动机绝热层和喷管设计的安全性和稳定性,提高发动机内流场仿真结果的精确性,揭示铝/三氧化二铝液滴碰壁机理并建立高密度高表面张力系数液滴碰壁模型显得十分必要。  本文
空间三体绳系卫星系统一般由一个主星和两个子星通过系绳串联组成,该系统可应用于诸多空间任务,如:人造微重力环境、能量或物资传输、空间观测、干涉测量等。在其应用过程中,轨道偏心率、科氏力以及其它外界干扰的影响会使子星相对主星产生摆动。这不仅会对系统的稳定性产生负面影响,甚至会导致系绳的缠绕和断裂,不利于系统运行。因此,如何对系统摆动进行抑制是空间三体绳系卫星系统研究的重点。针对该问题,本文着重对椭圆轨
在固体发动机药柱成型过程中,由于推进剂、绝热层及壳体材料的热膨胀系数不匹配,在固化过程及固化完成后的降温过程中,推进剂药柱因收缩变形会受到壳体的限制而产生较大的残余热应力/应变,通常将固化降温过程中形成的残余应变定义为预应变。预应变一直存在于发动机药柱的整个贮存期,会对推进剂性能造成影响,进而影响发动机药柱的结构完整性和安全性。而评价贮存过程中预应变载荷作用对推进剂力学性能及发动机药柱结构完整性影
随着航空宇航技术的快速发展,防御敌方空中打击和提升己方高价值飞行器突防能力越发受到重视。本文以导弹末段拦截敌方来袭空中机动目标的拦截制导律设计和主动防御协同拦截制导律设计两类问题为研究主线,一方面考虑到在设计拦截制导律的过程中需要提升制导指令的动态性能,降低制导控制增益的设计难度。例如,通过降低制导指令随预设状态的偏差敏感度以提升制导指令的动态特性(制导指令光滑连续,降低累积控制消耗和指令跟踪误差
直升机舱内噪声十分严重,如何降低直升机舱内的噪声水平已经成为现代直升机研制过程中必须关注的问题。本文以直升机主减速器齿轮啮合产生的中频振动及诱发的舱内宽频噪声控制为背景,研究局域共振型主减速器周期撑杆的减振及降噪特性。本文研究工作包括以下部分:(1)提出一种局域共振型主减速器周期撑杆方案。基于传递矩阵法分别建立了单振子、串联双振子和并联双振子局域共振型主减周期撑杆动力学分析模型,根据边界条件获得整
学位
驻涡燃烧室(Trapped Vortex Combustor, 简称TVC)自提出以来已经历了二十多年的研究与发展,但目前的研究成果距离实际工程应用还有一定距离,这不仅有工程技术上的限制,更受限于驻涡燃烧室基础理论研究还不够深入,尤其是针对采用液态燃料的驻涡燃烧室油气组织方法方面的研究,主要包括:流场结构组织及控制研究、与流场结构相匹配的供油方式及燃油分布特性研究、凹腔与主流的油气匹配特性等研究。
随着航空、航天、兵器等领域的高速发展,降落伞的工作包线从亚声速扩展到了超声速,超声速降落伞已经成为回收着陆领域的研究热点,但超声速降落伞的相关理论并不成熟,其设计及分析主要依赖于亚音速下的理论方法及经验公式,在超声速领域存在极大的误差。本文主要基于伞衣织物材料透气及柔性两个重要特点开展超声速降落伞的性能研究,旨在逐步构建超声速降落伞的理论体系和分析方法,为超声速降落伞的设计提供依据。本文的具体工作
由于在厚度方向无高性能的纤维,复合材料层合板的层间性能较弱。Z-pin技术通过在层合板厚度方向植入碳针以提高界面性能。本文开展了与 Z-pin 增强复合材料相关的试验及多尺度有限元分析研究。主要研究内容包括:  (1) 通过有限元单胞模型研究了 Z-pin 的植入对复合材料单向板弹性性能的影响。单胞模型中考虑了 Z-pin 植入引起的“眼形”树脂区及纤维变向,并对单胞施加了周期性边界条件。通过与文
学位
层合复合材料除具备复合材料的抗疲劳、耐腐蚀等优良性能外,还具有铺层可设计、加工工艺简单、材料成本较低等优点,已广泛用于航空、航天等领域,但层合复合材料在复杂载荷作用下的静力学行为及疲劳特性的研究还非常有限。本文针对层合复合材料,系统地研究了拉-扭组合载荷作用下的多轴力学行为及疲劳寿命预测模型,主要研究工作及研究结论如下:  (1)开展了不同偏轴拉伸角下复合材料单向板的试验研究。分别进行了不同偏轴拉
学位