论文部分内容阅读
外贸出口对花生仁的破损粒、霉变粒、大小、外形等外观品质有着明确的规定,但目前市场上除了光电色选机可以对霉变粒进行分拣外,其他外观品质指标主要依靠人工进行,难以满足不同的市场需求。计算机视觉具有无损、快速、可一次完成多个品质指标的检测、有利于设计制造自动分级流水线等特点,在农产品品质自动识别上有非常好的应用前景。利用计算机视觉技术进行花生仁外观品质检测研究,实现花生仁外观品质的自动、无损检测,对提高我国花生的市场竞争力具有重要意义。在这样的背景下,本文利用计算机视觉技术、图像处理技术和模式识别技术研究了花生仁外观品质检测方法。主要研究内容如下:1.结合花生仁图像特征提取的实际要求,分析了几种常用颜色模型的特点,对噪声滤除、图像增强、图像分割、特征提取等图像基础处理算法进行了分析和研究,确定了适用于花生仁外观品质检测的图像底层处理算法。2.为了实现对霉变花生仁的检测,研究了花生仁霉变过程中,颜色特征参数、纹理特征参数的变化规律,提取颜色特征H、I、S及纹理特征RW、GW、BW作为MATLAB所创建的神经网络的输入,利用BP神经网络模型实现了对正常、不新鲜、霉变三种情况花生仁的判别,正确分类率为96.67%、90%、93.33%;为了实现对霉变花生仁表皮霉变程度的判断,采用H和S的阈值识别出霉变区域,再经形态学处理,根据像素数目计算霉变区域面积比,对霉变花生仁的表皮霉变程度进行了判别,正确率为90%。3.为了实现对破损花生仁的检测,提取破损区域的颜色特征,基于模式匹配,建立了以R、G、B颜色信息为特征参数的破损花生仁检测系统,实现完好与破损花生仁的自动识别,检测准确率为80.12%。4.为了实现对不同形状花生仁的检测,采用傅立叶变换与傅立叶反变换对描述花生仁形状,该傅立叶描述子前13个谐波的变化特性可以代表花生仁主要形状。利用傅立叶描述子与人工神经网络实现了长形、普通形、三角形、椭圆形和圆形五个类别花生仁形状检测,判别正确率分别为90%、93.3%、96.7%、100%、93.3%。5.为了实现对不同尺寸花生仁的检测,研究了花生仁面积、周长、长轴长、短轴长、圆度、偏心率、当量直径、紧凑度等几何形状参数的提取方法,建立了花生仁图像投影面积和花生仁重量之间的相关模型,结果表明,图像投影面积和重量存在较显著相关关系;基于支持向量机和几何特征参数建立的网络系统,对花生仁五个尺寸级别的识别准确率大于90%。6.为了利用视觉技术检测花生仁货架期,研究了花生仁贮藏过程中表皮颜色、纹理、光泽等的变化规律,利用马氏距离判别准则建立了H、I、S三个颜色特征值参数及RW、GW、BW三个纹理参数与贮藏时间之间的关系模型,经验证识别准确率为86.25%。7.对包括机械系统、视觉检测系统、控制系统、程序软件在内的花生仁外观品质检测系统的软硬件进行了设计,为实现基于计算机视觉的花生仁外观多个外观品质的无损、快速检测提供了理论基础和技术依据。