【摘 要】
:
随着国防科技和民用技术研究的不断深入,对透波材料的性能要求不断提高,要求实现宽频、高效透波的同时,满足透波、耐热、承载于一体。双马来酰亚胺树脂是一种具有成熟工艺和优异介电性能的透波复合材料用树脂基体,然而双马来酰亚胺存在固化产物脆性大,冲击韧性差、固化温度高等问题,限制其在航空航天、电子器件领域的应用。常用的改性方法是用二烯丙基双酚A(DBA)与双马来酰亚胺共聚,但增韧的同时损失了树脂的耐热性能和
论文部分内容阅读
随着国防科技和民用技术研究的不断深入,对透波材料的性能要求不断提高,要求实现宽频、高效透波的同时,满足透波、耐热、承载于一体。双马来酰亚胺树脂是一种具有成熟工艺和优异介电性能的透波复合材料用树脂基体,然而双马来酰亚胺存在固化产物脆性大,冲击韧性差、固化温度高等问题,限制其在航空航天、电子器件领域的应用。常用的改性方法是用二烯丙基双酚A(DBA)与双马来酰亚胺共聚,但增韧的同时损失了树脂的耐热性能和介电性能。为此,本文在DBA增韧的基础上,采用有机蒙脱土(OMMT)和氰酸酯树脂(BADCy)共同改性DBA/BDM树脂体系。在综述大量相关文献与开展初步实验探索的基础上,开展了如下研究工作。首先,采用十八烷基三甲基溴化铵(STAB)对钠基蒙脱土进行有机化改性处理,结果表明改性后的蒙脱土层间距最大增大了2.77nm,片层结构更加明显,与树脂相容性改善。其次,将有机化蒙脱土OMMT加入BDM基体树脂,制备出OMMT含量从0到5wt%的透波纳米复合材料,探究了OMMT含量对透波复合材料的微观结构,耐热性能、介电性能、透波性能和高温透波行为的影响。结果表明,添加量为2wt%时,树脂体系的耐热性能最佳,其断面形貌由脆性断裂特征转变为韧性断裂特征;在X波段(8-12GHz)内,材料透波率在75%以上,厚度在2mm以下和8.5~10mm范围内具有良好的透波率(>90%);在室温到200°C范围,BDM/OMMT-2的透波率稳定性最佳,200°C时仍保有较宽透波率>90%的匹配层厚度。最后,用BADCy与BDM复合作为基体,制备了OMMT含量从0到4wt%的透波复合材料,探究了BADCy树脂与BDM树脂复合情况及OMMT含量对复合材料综合性能的影响。研究结果表明,BADCy/BDM树脂的固化机制以BDM和BADCy各自自聚合为主,而OMMT层间的季胺阳离子能够促使两相共聚形成均相交联网络,进而改善树脂性能;OMMT添加量为3wt%时,材料耐热性能最佳,断裂形式为韧性断裂;在X波段内,材料透波率在77.5%以上,2mm以下和8.5~10mm厚度范围内的透波率>95%;透波率随温度变化的稳定性优异,200°C时仍保有较宽透波率>95%的匹配层厚度。OMMT在树脂基体中的分散情况、BADCy树脂与BDM的聚合机制与材料性能密切相关,OMMT的添加可以增加双马来酰亚胺树脂的设计选择,拓展其作为波透材料的应用范围。
其他文献
在养殖畜禽过程中因环境、技术、管理等问题而致死致病的畜禽占比较大,不仅影响畜禽业发展,还可能在社会卫生健康安全领域埋下隐患。针对病死畜禽无害化处理的意义及措施进行研究,研究结果表明,无害化处理具有降低传染病传播的几率、优化畜禽防疫体系等重要意义。为提升病死畜禽无害化处理的水平,相关部门需健全处理体系,加大无害化处理的推广,改进处理方法,以期优化病死畜禽无害化处理的效果。
光电催化(PEC)水分解技术是将太阳能转化为化学能的理想途径之一。在光电催化水分解过程中,使用p型半导体材料作为产氢一侧的光电阴极。理想的PEC光电阴极材料应具有较高的光捕获能力、良好的结构稳定性以及电荷分离能力。铁基氧化物作为一种p型半导体材料,因其廉价易得、稳定性好、具有合适的分解水能带位置而在PEC制氢中具有良好的研究前景。本文通过水热法制备了p型Fe2O3和LaFeO3并通过不同的改性策略
人口老龄化对我国社会的各个系统提出了严峻挑战。近年来我国中央和地方两个层级的法律和政策在保障老年人无障碍出行方面给出诸多规范和指引。但是,实践层面仍然存在无障碍环境标准模糊、公共交通工具无障碍满意度参差不齐、公共服务供给不平衡、信息智能手段鸿沟等方面的挑战。加大保障老年人便利出行力度,要从理念、制度及多元社会主体三个维度着力:夯实“包容”“积极”“主流化”理念,作为制度内在的养分;继续从粗犷走向精
目的:观察柴胡加龙骨牡蛎汤联合左西替利嗪治疗血虚肝郁型老年瘙痒症的疗效。方法:选取2021年3月—2022年8月本院收治的SP患者共80例,随机分为对照组和研究组,各40例。对照组给予盐酸左西替利嗪片及维生素E乳治疗,研究组在对照组基础上给予柴胡加龙骨牡蛎汤随证加减治疗。比较两组治疗疗效、瘙痒及睡眠积分、复发情况。结果:研究组治疗总有效率高于对照组(P<0.05);两组治疗后瘙痒程度积分及睡眠影响
微波吸收材料在民用及军事隐身领域均具有明显应用前景,当前研究多集中在吸波剂粉体的设计及化学合成,宽频吸波性能仍有待进一步提升。除吸收剂外,结构设计可显著提升吸收性能。蜂窝材料孔结构有序、轻质、耐高温、力学性能优,还可通过结构设计来调节阻抗进而优化吸波性能,是一种理想的吸波结构体。基于此,本论文从碳微球吸收剂制备/改进、蜂窝结构设计两个方面进行了优化,探究了外型特征、结构参数等对吸波性能的影响,所得
锂离子电池因其高能量密度以及长循环寿命已广泛应用于便携式电子、电动汽车、航空航天等诸多领域。目前,石墨负极低的理论比容量(372 m Ah g-1)已无法满足人们对于高比能电池系统的需求。硅氧化物(SiOx)由于高理论比容量(2680 m Ah g-1)、储量丰富、成本低、环境友好、易于合成等优点,被认为是最有前景的负极材料之一。然而,硅氧化物大的体积变化和固有的低电导率,在脱嵌锂过程中,易产生颗
钛合金面临着耐磨性能较差的应用限制,在各类摩擦条件下的耐磨性能也成为影响TA15钛合金在汽车工业,航空航天以及医疗领域中各类零部件的应用的主要因素,限制了其在大多数摩擦条件下作为机器零部件的应用。因此,提高TA15钛合金的表面耐磨性及硬度已成为汽车工业,航空航天以及医疗领域对此类材料的迫切需求。本课题将喷丸技术与双辉等离子表面冶金技术相结合,对TA15钛合金先进行了表面纳米化预处理,随后进行了表面
高比重钨基合金因其固有特性,如高熔点,高密度和低热膨胀系数,在工业、军事、航空航天、电子技术等领域具有广阔的应用前景。目前常使用传统的粉末冶金方法制造钨合金及其部件,但因其难以成形复杂结构且常需后续加工,而限制了钨合金的应用。激光熔化沉积(LMD)是一种基于粉末成形的增材制造技术,因其具有的高度加工自由度为钨合金的制造成形提供了新途径。本文系统研究了高比重钨基合金激光熔化沉积过程中热行为与组织演变
土地盐碱化已成为农业发展和经济建设中亟待解决的重点问题,传统处理方法存在一定的局限性。生物炭作为一种兼具经济效益和生态效益的土壤改良剂,已在盐碱土壤改良中展现出良好潜力。而相比传统热解炭,水热炭碱性特征较弱,具备用于盐碱土壤改良的优秀潜能。本文通过土壤淋洗实验,对比研究热解炭和水热炭对黄河三角洲盐碱土壤的改良效果,主要研究结果如下:(1)使用花生壳、小麦秸秆、玉米秸秆、稻壳作为原材料,采用马弗炉热
电子背散射衍射(Electron backscatter diffraction,EBSD)可以用来对微观尺度下材料的晶体信息进行表征,对于指导材料设计,提升材料的宏观力学性能有着重要的作用。结合高分辨电子背散射衍射图案以及先进的集成数字图像相关图像处理算法,可以通过追踪衍射图案中的微小位移和旋转,精确测量材料表面相对于参考点的弹性应变应力场。然而在实际计算过程中,图案中心(Pattern cen