2219铝合金各向异性塑性本构模型研究

来源 :太原理工大学 | 被引量 : 0次 | 上传用户:a932632391
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着现代工业的发展和技术的进步,对工业构件的要求愈加严格,2219铝合金作为优质工业用合金,其部分性能优于钢铁;因为铝金属元素密度低,所以加入其他元素构成的2219铝合金质量轻且强度高;2219铝合金的相关金属构件应用于工业生产大大减轻了物体的质量实现了减重的目标,因此被广泛应用于航空领域;飞机机身的蒙皮等均是由铝合金组成。故本文基于2219铝合金在实际生活中的应用对其力学性能展开分析,主要研究材料在塑性变形阶段的力学性能并构建出其本构方程,研究内容如下:(1)2219铝合金板是典型的各向异性金属材料,由于材料各向异性性质的存在,材料在不同方向上的力学性能存在一定的差异,各向异性具有多种表现形式。文章为准确描述材料的各向异性性质取不同角度的试件进行相关力学实验,分别为:沿轧制方向即0°、垂直于轧制方向即90°、与轧制方向呈30°、与轧制方向呈45°、与轧制方向呈60°共五种角度。(2)文章设计单轴拉伸、单轴压缩和剪切三种实验方式,采用非接触式应变测量技术(DIC)对三种实验方式下试件的变形过程进行监测,利用图像处理软件求得实验过程中三种实验方案下试件的真应变;充分考虑单轴拉伸和单轴压缩实验在变形过程出现的横向与厚向非均匀变形,利用公式求出实验过程中的横截面因子,进而求出实验过程中的真应力。(3)根据真应力-真应变曲线,利用平移应变法求出材料在不同实验方式下不同角度的屈服应力;根据真应力-真应变关系验证材料的各向异性并发现材料具有拉压非对称性质。利用不同实验方式的真应力-真应变曲线构建材料的Voce硬化模型。(4)对Hill48屈服准则和Drucker提出的通用屈服准则进行对比择优,选择Drucker通用屈服准则作为本文材料的屈服准则,通过对Drucker通用屈服准则的分析,利用材料在不同实验方式和实验角度的数据对屈服准则中的各向异性参数进行标定。(5)利用塑性功等效原理,求出三种实验方式下的塑性功,即真应力-真应变曲线所围图形面积,以剪切实验状态作为材料的等效应力状态,分别求出单轴拉伸和单轴压缩的等效塑性应变和等效应力,利用等效应力和等效应变求出材料的后继屈服面及屈服函数相关各向异性参数。
其他文献
内凹蜂窝材料以其可设计性强、高吸能性及负泊松比效应被相关学者广泛研究,并在航天航空、生物医疗及军事设备等领域被广泛应用。内凹蜂窝材料在实际服役环境中普遍承受复杂加载工况,如多轴加载、斜冲击等。因此,对内凹蜂窝材料在复杂加载下的研究十分必要。然而,在生产过程中易导致蜂窝材料的胞壁不均匀或产生缺陷,且在试验测试中无法进行复杂加载导致数据点缺少,因此对内凹蜂窝材料在复杂加载下的研究较少。本文利用有限元软
学位
我国医疗市场开放以来,我国的民营医院实现了快速的发展。在新医改进行的当下,改进和完善医院的激励体系已经成为重要的工作,也是民营医院发展的重要任务。但是民营企业普遍存在医护人员数量不够、医护人员工作压力大、医护人员工作强度高以及医护人员队伍不稳定、离职率高等多方面的问题。山西RA医院属于山西太原当地一家民营性质的综合性医院,近年来国家对医疗卫生事业有了越来越多的扶持,同时新医改的实施也给山西RA医院
学位
轻质高强复合材料对于节能减排和降低成本具有重要意义,是当前航空航天、军事国防等尖端领域的研究热点。近些年来,科学家们受天然生物结构的启发,通过模仿生物结构中的精细层级结构,设计并获得了一系列轻量化仿生结构材料,为高性能复合材料的设计和制造提供了新的途径。例如,研究人员通过模仿贝壳珍珠层的“砖-泥”交错的层级结构获得了兼具高强度和高韧性的仿生结构材料。在最近研究中,科学家发现了一种存在于海洋中被称为
学位
采用激光烧蚀氧化石墨烯薄膜,可实现其微尺度图案化加工,以应用于微纳米电子器件。但激光冲击下氧化石墨烯薄膜的结构及力、电性能变化直接影响了器件稳定性和可靠性。为研究超高应变率加载对氧化石墨烯薄膜的结构及性能的影响,本文进行了如下研究:(1)采用真空抽滤的方式将氧化石墨烯分散液抽滤到滤膜上形成氧化石墨烯薄膜,再将其置于玻璃基底上,以便对其进一步研究。采用不同功率激光冲击氧化石墨烯薄膜,通过对其表面形貌
学位
随着我国科技和工业水平的不断发展,制造业对材料综合性能的要求变得越来越高。尤其是在航空航天、国防军工等尖端领域,不仅要求材料具备高强、高韧等多方面特性,同时还要求它们能够在复杂服役环境下兼具轻质和良好抗氧化、抗蠕变等性能特点,这将对工程材料的设计与制备提出了更高、更苛刻的要求。与人造材料相比,历经千百万年进化而来的纷繁复杂的天然生物材料具有多方面的鲜明优势。特别是贝壳珍珠母,作为被研究和模仿最多的
学位
有机电化学晶体管(OECT)由于具有良好的生物兼容性、较低的工作电压以及高跨导等特点被广泛用于生物传感领域。从OECT诞生至今,尽管OECT的器件物理以及模型已不断完善,但其内部的微流体离子输运机理目前尚未明晰,因而离子输运仍然是影响OECT器件性能的关键因素。本文围绕OECT内部的微流体离子输运对于器件以及传感器性能的影响展开了以下几个方面的研究工作:(1)使用循环伏安法来制备OECT的有机半导
学位
锂离子电池是一种新型的能源系统,广泛地用于各类电子设备,且随着在大范围的医用设备和航天等行业的应用中,安全问题日益凸显。开发高效率的清洁储能系统尤为重要。钠离子电池和锂离子电池的储存机制类似,并且在地球的地壳中存在着大量的钠资源。但是,由于钠离子半径比锂离子大,以及商业化的锂离子电池负极(石墨)的层间间隙小,不能有效地进行钠离子嵌入/脱嵌。因此,研制高能量密度、使用寿命长的钠离子电池负极材料,是解
学位
透明材料在提供良好可视效果的同时,兼具一定的刚度和耐久性,广泛应用于特种防护、交通载具、光学器件等领域。传统的透明材料诸如玻璃、陶瓷等,均属于脆性材料,一旦失效将会迅速破裂,并产生锋利碎片容易引发二次伤害。随着复合材料学科的不断发展,研究人员尝试将多种透明材料结合在一起,制备兼具多种材料优点的透明夹层结构。传统复合结构遵循设计-制备-仿真-实验-调整优化的流程,研发周期较长,且面对多目标性能的设计
学位
Nb3Sn超导体在磁约束核聚变以及高能物理超导磁体领域有着广泛的应用需求。Nb3Sn超导体临界性能的应变效应是强磁场超导磁体领域中重要的研究课题。Nb3Sn超导体的超导临界性能对应力和应变极其敏感,当承受外载作用时,超导性能随之变化,当超导体承受的应变超过其不可逆应变极限时会产生裂纹,导致超导临界性能大幅下降,进而诱发失超。研究Nb3Sn超导体的损伤断裂行为对于揭示超导临界性能弱化背后的力学机制以
学位
本研究采用真空电弧熔炼炉制备了Al0.1CoCrFeNiTix(X=0.1,0.3,0.5)高熵合金,通过Instron5969万能试验机和霍普金森压杆系统研究了应变率对合金室温力学性能、微观组织和变形机制的影响。通过冷轧和退火优化了Al0.1CoCrFeNiTi0.1高熵合金的组织和性能,并使用Instron5969万能试验机测量了该合金在室温和低温下的准静态拉伸力学性能,以及使用分离式霍普金森
学位