【摘 要】
:
杂质是材料中非常重要的一类缺陷。它的存在,不仅会影响材料的电子输运、磁学等方面的性质,同时也会与位错、晶界等其他结构缺陷构成复合缺陷,从而显著的影响材料的强度、韧性等力学性质,甚至决定了材料的基态结构。研究杂质在不同体系中的作用,并寻找微观层面上的解释,除了具有重要的科学意义之外,也会有力的促进高性能的材料设计以及现有材料性能上的改善,因而同时具有很强的应用价值和指导意义。在本篇论文中,利用精确的
论文部分内容阅读
杂质是材料中非常重要的一类缺陷。它的存在,不仅会影响材料的电子输运、磁学等方面的性质,同时也会与位错、晶界等其他结构缺陷构成复合缺陷,从而显著的影响材料的强度、韧性等力学性质,甚至决定了材料的基态结构。研究杂质在不同体系中的作用,并寻找微观层面上的解释,除了具有重要的科学意义之外,也会有力的促进高性能的材料设计以及现有材料性能上的改善,因而同时具有很强的应用价值和指导意义。在本篇论文中,利用精确的第一原理量子力学计算方法,我们系统的研究了杂质在不同类型的缺陷体系中的效用,并通过分析这些体系中电子结构和能量学上的变化,阐明了其中的微观机理。通过能量-原子位移曲线可知,当C、N及O处于α-Fe的{001}[110]裂纹前端时,前面二种元素可以阻碍裂纹沿原方向的进一步扩展,而O会加速裂纹的扩展,削弱α-Fe的韧性。进一步分析了掺杂体系的电荷密度、态密度以及给定原子对的原子间相互作用能等结果后,我们发现,起决定作用的是杂质原子与邻近铁原子成键的各向异性:C和N与Fe原子在垂直于裂纹面的方向上的成键强于平行于裂纹面方向的成键,而O原子并没有这种特点。根据Rice-Wang模型,Re偏聚于α-FeΣ5[001](010)晶界处时,可以强化晶界,增强晶界两侧的Fe原子之间的相互作用,通过分析杂质形成能以及不同元素的化学势发现,Re的作用可归因于其较大的化学势。同时,我们研究了多种杂质元素共偏聚于晶界处时的作用,发现对于两种致韧元素Ti和B而言,(Ti+B)共偏聚不会使得晶界进一步加强。而Ti和致脆元素O共存于晶界时,二者的效果相互抵消。我们定义了杂质偏聚能,发现Ti的存在可以非常有效的抑制O在α-FeΣ5[001](010)晶界处的偏聚,从而改善α-Fe的韧性。杂质偏聚能在研究杂质共偏聚的时候对于Rice-Wang模型是个很好的辅助分析手段。根据实验,Al取代MoSi2中的Si原子后形成Mo(Si1-x, Alx)2,当x超过10 at.%后会导致Mo(Si1-x, Alx)2发生C11b→C40的相变。基于群论和晶体场理论,我们分析了不同浓度x下Mo(Si1-x, Alx)2体系的态密度,发现因为价电子浓度会随x变化,从而决定了费米能级的位置,因为C1 1b、C 40两种结构对称性的不同,体系的态密度会分裂为不同的子带,费米能级与这些子带的相对位置关系决定了两种结构的相对稳定性。基于这些讨论,我们提出了判断结构稳定性的判据,解释了大部分过渡金属二硅化物的基态结构,并讨论了通过第四元组分调控Mo(Si1-x, Alx)2基态结构的可行性。
其他文献
黎曼流形的分类问题一直是微分几何中一类重要的问题。本文给出了一些特殊的黎曼流形上的刚性定理。主要内容如下:1.令(Mn,g)(n≥ 4)为n维紧致局部共形平坦黎曼流形,有常数量曲率和常Ricci曲率张量的平方和。运用活动标架法,我们证明了 Ricci曲率张量有三个不同特征值的黎曼流形是不存在的。2.我们证明了一个n维(n≥ 4)紧致Bach平坦流形若它的数量曲率为正且σ2是正常数,且Weyl张量满
本文研究了蒙日-安培型方程的一些性质,包含一类蒙日-安培型方程解的径向对称性,以及一类以蒙日-安培型方程为特例的非线性奇异椭圆方程解的边界H(?)lder估计。我们先对一类来自于一些几何问题的蒙日-安培型方程解的对称性进行了讨论,在适当的结构性假设条件下,使用一种新的变换分析了解在无穷远处的渐近行为。进而结合移动平面法,证明了方程凸解的径向对称性。其次,我们研究了一类包含蒙日-安培方程、K-海森方
外尔半金属是一种新奇的拓扑物态,其低能激发与高能物理中外尔费米子遵循相同的规律。由于凝聚态系统更为多样的结构对称性,和丰富的相互作用,在一类正交相的过渡族金属二硫化物系统中还存在违背Lorentz不变量的第二类外尔费米子,并且这种新奇粒子没有标准模型粒子与之对应。尽管过去几十年凝聚态物理学家对过渡族金属二硫化物体系中的谷电子学、能隙可调半导体、电荷密度波以及超导的研究取得了巨大的进展,然而实验上对
实数或复数的超越性是数论的基本问题之一。虽然我们知道几乎所有的实数或复数都是超越数,但要判断一个给定的实数或复数是否为超越数则通常极为困难。现代数论给我们的启示是:同样的问题放在有理数域或正特征函数域上时,在处理技巧上会呈现出许多共性和差异。本文从函数域的角度出发来研究形式幂级数的线性相关性、超越性以及代数独立性,主要包括以下四个方面的内容:一.线性无关性判别准则:我们在正特征函数域上给出了判断形
强相互作用下的量子多体系统可以在低能下演生出丰富的强关联物相与相变现象。在传统理论中,物相与相变由对称性来刻画,然而有一大类新发现的物相,其根本描述在于拓扑而非对称。在本文中,我将围绕高温超导与量子磁性聚焦到几个典型的零温量子强关联多体系统来探讨一些新奇的拓扑物相与相变。受到铜基高温超导实验的启发,我们在描述铜氧面低能物理的t-J模型中引入反铁磁外场耦合,研究超导配对对称性与能隙所受到的影响。在电
Landau-Ginzburg模型一直以来同时受到数学家们与物理学家们的双重关注。围绕Landau-Ginzburg模型的数学研究,将奇点理论与非交换几何、Hodge理论、形变理论和量子上同调等多个不同的数学理论紧密关联起来,并提供了诸多重要的研究课题。其中,Landau-Ginzburg模型之间的镜像对称问题是相关的林林总总的研究方向中最为重要也最有丰富的课题之一。但围绕这个课题的相关研究远未充
颗粒撞击液面是自然界和工业过程的常见现象,也是流体力学和颗粒动力学等学科的基础问题。本文对微米级颗粒撞击液面过程的颗粒和流体运动行为开展研究,揭示颗粒撞击液面的动力学和能量转化机制,为相关自然现象的理解和工业技术的开发提供理论支撑。首先,数值模拟研究了球形颗粒零速接触液面后的运动行为和漂浮条件。颗粒零速接触液面后的运动由邦德数、接触角和密度比控制。给出了颗粒撞击液面后能够漂浮的极限密度比,与实验结
近年来,由于在数据存储系统、通信系统和消费电子产品等方面的应用,具有很少重量的线性码,被专家学者们广泛地研究。文献[1]提出了线性码的一般构造,即由定义集来构造线性码。通过选择合适的定义集,可以生成许多已知的线性码。基于这种构造,目前已经构造出了许多线性码。在本文中,对奇素数p和正整数m≥2,我们通过选取定义集D={x∈F*pm:Tr(x2+x)=0}、D0={x∈Fpm:Tr(x2+x)∈C0(
有限元法(FEM)超收敛计算的重要性体现在两个层面。其一,超收敛计算可以在相对稀疏的有限元网格上面获得较高精度的解答;其二,超收敛解可以在有限元自适应分析当中用于构造后验误差的估计量,此即本文主要的研究目标。单元能量投影(EEP)法是有限元超收敛计算的有效方法,已经在许多一维和二维问题中取得成功,但在尝试处理三维问题的时候遇到严重的阻碍。本文重新研究EEP法处理多维问题的理论和算法,实现了三维问题
非凸二次约束二次规划(QCQP)是一个NP-hard的问题,若P NP,则不能在多项式时间内求其全局最优解。对于一般形式的非凸QCQP问题,一个角度是使用凸松弛结合分支定界法求全局最优解,另一个角度是将原问题写成一个等价的非负二次函数锥规划问题,并用可计算锥覆盖法求解。本文中,我们首先研究了一类具有隐凸性质的QCQP问题——扩展信赖域子问题(eTRS),我们补充了Burer等人在文献中关于该问题的