论文部分内容阅读
选矿是将原矿石经过复杂的物理/化学变化分离成有用矿物和脉石并使有用矿物富集起来的一种流程工业过程。该过程由一系列的复杂工序串联或并联组成,每道工序都有评价其生产运行状况或产品质量的指标,称为工艺指标。而对整个选矿流程进行评价的指标为综合生产指标,主要有精矿产量和精矿品位;其在很大程度上取决于工艺指标。综合生产指标是选矿生产过程的最重要指标,如何按照综合生产指标有效地调整整个选矿生产流程是保证选矿企业效益的关键。然而选矿全流程综合生产指标难以在线获取,一般都是采用离线化验的方法得到,难以满足生产优化实时性的要求。因此,需要建立精确的综合生产指标预报模型来对其进行预报,这对于实现整个选矿过程的优化控制具有非常重要的意义。现有的选矿生产指标预报模型的输入变量大都是基于研究人员的经验确定,不能有效避免噪声变量也无法直观地展现目标变量和各输入变量之间的相关性。而现有智能建模方法如BP网络等弱学习机大都基于经验风险最小化,容易产生过拟合,泛化性能差。而集成学习克服了弱学习机的上述不足,增强了模型泛化性能。此外,现有预报方法大多是离线学习,不能较好的适应选矿过程工况以及环境的变化。本文针对上述问题,依托国家自然科学基金项目“复杂工业过程运行指标闭环优化方法研究(61273031)”,开展了选矿过程综合生产指标预报的研究以及选矿综合生产指标预报模型实验系统的开发,主要工作如下:(1)针对选矿过程综合生产指标预报模型输入变量选择的问题,引入最大信息系数算法分析选矿过程中各工艺变量、原矿性质与生产工况条件指标和综合精矿产量指标之间的关系,根据所得的相关性值并结合实际的选矿过程,然后选择和综合精矿产量具有较强相关性的变量作为精矿产量预报模型的输入变量。(2)提出了一种改进集成随机权神经网络的选矿过程综合精矿产量在线预报方法。其中,集成随机权神经网络算法采用正则化负相关学习策略来集成个体模型;通过在线学习方法对新数据进行学习同时更新模型,使得模型具有更好的适应性能;并提出了激励函数参数优化方法。为验证算法的有效性,采用6个标准测试数据对所提算法进行测试,实验结果表明本文算法相对于现有方法具有更好的性能。此外,采用实际选矿数据进行应用研究,在模型变量选择基础上进行选矿过程精矿产量指标的预报,通过与前人搭建的Adaptive cPSO、PCA-MGA-LSSVM和Online-DNNE等预报模型相比,本文所提方法具有更高的预报精度,验证了算法和变量选择方法的有效性。(3)在上述预报模型理论研究基础上开发了“选矿过程综合精矿产量预报模型实验系统”。该系统基于“Apache+PHP+MySQL”的系统基本构架,采用vue+webpack渐进式框架,算法程序采用MATLAB编程技术。系统中集成了不同的变量选择方法,不同的预报模型回归器算法;通过该系统可以实现对不同模型预报性能的研究,同时还可以进行模型参数对其性能影响的研究。最后,通过实验验证了系统的有效性。