论文部分内容阅读
基于物理的计算机动画一直是计算机图形学领域的一个热点研究方向,尤其是电影特效的发展以及电子游戏的强力需求推动着这一方向的研究。人们不仅需要形象的真实感,也需要运动的真实感。而真实世界蕴涵着复杂的运动规律,其复杂度往往使得人们难以用一些简单过程来表述。如何发现这些规律并通过计算机计算重现真实世界的运动成为基于物理的计算机动画的关键技术。然而一方面人们对真实世界的许多现象的内在本质仍处在探索中,在计算机图形领域中对于这些现象缺乏对其物理模型本身比较合适的描述和建模,另一方面物理计算的复杂性往往带来性能的严重损失,满足不了许多对时间要求较高的图形学应用领域的需求,因此如何在视觉误差范围内对其计算处理进行加速就显得尤为重要。本文以基于物理的计算机动画作为研究目标,并试图在物理模拟的真实感和效率之间寻求一个良好的平衡点,从而满足众多应用领域的需求。 本文对这一课题的研究着重集中在以下三个方面:第一,对于基于物理的树木动画,寻求新的方法以模拟和加速枝条自然的变形计算;第二,试图利用图形卡的最新进展,以新的图形硬件(GPU)的可编程性和一定程度的并行性加速通用代数运算,实现基于物理的计算机动画的加速;第三,研究基于物理的流体模拟,着重研究流体与物体表面的作用以及流体计算的加速。 本文算法的主要贡献和创新点在于如下工作: □第一次在计算机图形学领域将表面流体的运动和表面形态的湿度变化结合起来,以模拟流体流经不同介质表层所产生的复杂真实效果。对于潮湿的表面采用物体表面对水的实际吸收量作为控制因子来表现其不同程度的湿润情形。同时模拟了整个表层污物的输运以及侵蚀和沉积过程。 □利用GPU求解纳维-斯托克斯流体运动方程组,实现了烟雾等流体在复杂环境中实时自然流动。求解过程中采用半拉格朗日方法求解对流项,结合隐式迭代以获得绝对稳定的格式,从而满足大的时间步长。由于整个计算映射到GPU上,从而利用GPU的并行性获得充分的加速,使得整个计算和绘制达到实时效果,另外,为了能灵活地处理复杂边界,创造性地引入修正因子和偏移两幅纹理,通过修正因子纹理来设计各类边界,而通过偏