基于神经网络的知识图谱推理关键技术研究

来源 :电子科技大学 | 被引量 : 0次 | 上传用户:jinsongyou
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自2012年Google正式提出知识图谱概念以来,知识图谱已经在智能问答系统、推荐系统、垂直搜索服务、辅助决策系统等多个领域展现出丰富的实际应用价值,受到工业界和学术界的广泛关注。但目前知识图谱依旧面临着人工构建成本高、数据稀疏、信息不完善等缺陷,极大限制了知识图谱的应用能力。目前,如何对知识图谱进行高效的表示与推理依旧是研究工作的重点和难点。本论文针对现有研究方法对知识图谱图结构信息利用效率低、建模能力不足的问题,提出基于局部子图结构和全局路径结构联合推理的模型,并将知识图谱推理技术推广到个人日常生活最基本的健康问题上,设计了基于知识图谱推理的医疗辅助建议系统。本论文的主要研究工作如下:(1)提出基于卷积神经网络的多层次局部子图结构推理。针对现有模型对知识图谱图结构挖掘不足,尤其是多阶关系子图结构信息利用不足的问题,本论文对实体的多阶关系子图进行区分构造,分层次地采用多尺度卷积神经网络充分捕捉子图元素的交互特征,并通过实验验证了对子图结构进行分层次构造的有效性。(2)提出基于注意力机制的局部子图结构和全局路径结构联合推理模型。针对现有方法对路径结构建模能力不足、路径存在噪声的问题,提出采用CNN和Bi-LSTMs长短时记忆网络全面捕捉路径特征,设计基于实体上下文注意力机制的多路径融合算法,同时结合局部子图结构和全局路径结构进行联合推理,充分挖掘和利用了知识图谱的图结构信息。最后通过实验验证了路径编码网络、多路径融合策略以及联合推理的有效性。(3)在应用层面,设计并实现了基于知识图谱推理的医疗辅助建议系统。该系统将知识图谱推理技术推广到与个人生活健康息息相关的医疗领域。针对医疗领域中医疗数据多源异构、患者就医成本高、个人医疗知识匮乏等问题,从数据层面将医疗网站中大量的文本数据整合成医疗知识图谱,并基于本论文提出的算法对该医疗知识图谱进行推理补全,帮助患者进行疾病自查并提供相关就医建议和日常健康注意事项建议等,对个人医疗知识的普及和推广以及降低患者就医成本具有实际意义。
其他文献
随着人工智能技术不断发展,当今社会,语音不仅仅是人类之间通信交流的手段,也成为人机交互的重要桥梁。近年来,语音识别技术发展飞速,开始逐渐应用到各个领域。深度学习的加入,使得语音识别的准确率有了质的飞跃,但是伴随而来的是网络模型越来越大,难以在嵌入式设备上移植和使用。而且语音数据存在一定的隐私性,存在收集困难的问题。并且在实际的语音场景中,总是存在各种噪音,包括但不限于环境噪声、设备噪声、发动机噪声
近年来,随着深度学习和计算机技术的快速发展,图像分类技术已逐渐趋于成熟,其应用在日常生活中的各个领域也十分常见。然而,细粒度图像分类作为图像分类的重要的一个分支,相较而言更具有挑战性,还需要进一步发展。普通图像分类一般是区分不同的大类,不同类型图像之间的差异较大;而细粒度图像分类需要在同一个大的类型下区分不同的子类型。因此,细粒度图像不同子类之间的差异很小,具有类间方差较小而类内方差较大的特性。其
人体检测是当前机器学习领域研究的热点,该技术在虚拟现实、自动驾驶等领域有非常重要的意义。随着深度学习的快速发展,人体检测技术已经取得了不错的进展。但当前人体检测算法在复杂场景下仍然面临目标多尺寸、遮挡等问题,检测精度和速度往往顾此失彼,使得该技术在现实应用时受到一定约束。此外,智能安防、人机交互等领域迫切需要对人体提取更高级的语义信息,即人体行为识别。人体行为与人体姿态联系紧密,尽管基于人体姿态的
近年来,图像超分辨率重建算法的研究取得了重大进展。一般情况下,和较低分辨率图像相比,高分辨率图像可以展示更充分的纹路、更明显的边沿架构,使人类从中获取到更多的有助于图像理解的信息。所以高分辨率的图像更有利于后续对于图像进行分解、处理和应用,同时也可以提高人类的视觉享受。图像超分辨率主要是通过低分辨率图像恢复图像细节,生成对应的高分辨率图像。通常来说,网络越深重建的图像效果越好。但是不计后果地增加网
随着现代科技的革新与发展,海量的互联网用户数据在网络中产生,然而集中式地将数据收集到数据中心的传统方法具有很高的风险与成本,在机器学习中保护隐私的迫切需求促使了联邦学习技术的诞生。而边缘网络的发展让网络服务得以从云端下沉到边缘,硬件设备能力的提升也促进了边缘计算的普及,这使得联邦学习的分布式架构能够灵活地应用于网络中。然而,尽管这项技术能够协调大量的用户在其设备上完成训练任务。但联邦学习要求服务器
深入理解图像的语义信息是计算视觉领域发展的关键,然而在视觉任务中,高级语义信息的获得并不容易,这导致视觉场景图的生成成为一项极具挑战性的任务。视觉场景图生成能帮助本文获得更高阶的语义信息,它作为桥梁连接了物体检测和场景理解,在物体检测的基础上,对物体之间的关系进行建模识别,并使用“主语-谓词-宾语”这样的三元组结构表征物体间的有效关系,最终通过连接这些三元组构成一幅有向的视觉场景图。尽管以往的工作
传统的图像分类任务在很大程度上取决于大规模的数据集,该数据集可为所有类别提供经过标记的样本。但是,在现实世界中,图像的类别遵循长尾分布,其中大多数类别很少出现,因此很难为这些类别收集大量标记的样本。另一个挑战是新定义类别的爆炸式增长,为这些新类别找到足够多的范例是非常困难的。近年来,为了解决这些类别的分类问题,零样本学习得到了广泛的研究。人类可以通过现有的知识动态地创建新的类,而不需要视觉数据。例
随着基于深度学习的算法出现,各种计算机视觉应用都取得了令人瞩目的进步。但是,大量现有工作已经清楚地证明了深度神经网络(DNN)容易受到对抗样本的攻击。而对抗样本攻击就是在输入数据中添加细微的、人眼不易察觉的噪声,从而误导深度网络模型的预测。这些对抗攻击的存在有利于研究人员了解深度网络模型的脆弱性。目标攻击是指攻击方想要将模型预测结果改变为某些提前指定的目标类别中。而目标攻击又可以根据攻击者对于所攻
自2012年深度卷积神经网络在分类任务上的成功以来,计算机视觉领域便迎来了蓬勃的发展。但是,随着研究的深入,计算机在关于视觉单一模态的众多任务中均已超过人类认知的能力。考虑到未来人机交互,联合传统计算机视觉和自然语言的一系列基本挑战逐渐受到研究者们的关注。在计算机视觉三大任务之一的目标检测的基础下,基于语言描述的目标检测在2014年被提出。基于语言描述的目标检测旨在通过物体的自然语言描述在对应图像
生成对抗网络依靠其非监督的学习方式和强大的生成能力,自2014年提出以来就受到了人们的重点关注。GAN在不断提出新模型的同时也遇到了许多新的问题,其中远距离依赖关系拟合能力差,图像全局特征不一致及因此导致的生成图片质量差等问题不断出现,限制了GAN的进一步应用。本文围绕基于通道特征学习的生成对抗网络图像生成方法展开研究,提出了一种有效利用通道特征提高生成图片质量的方法。通过跟踪国内外相关领域的最新