论文部分内容阅读
现代大型光学工程的快速发展对光学元件的加工质量提出了严苛的要求。特别是用于激光聚变的大口径光学元件,要求具备大口径、高面形精度、超光滑、低缺陷的要求。高功率激光装置中的光学元件如含有体缺陷,会对入射激光进行调制,降低光束输出质量和光学元件负载能力,甚至导致元件自身或下游元件出现损伤。为了保证高功率激光驱动器的平稳运行,迫切需要开展针对大口径光学元件体缺陷的检测技术研究,并建立满足工程需求的批量化检测能力。本文针对大口径光学元件振幅型体缺陷的检测,整合现有检测方法的优势,采取了分步检测的技术路线,提出了定性识别与定量检测迭代结合的复合模式检测方案。第一步,基于暗场散射成像技术对振幅型体缺陷进行识别并定位。采用片状激光在暗场环境下从光学元件侧面照明,通过成像模块沿通光面快速扫描识别缺陷,并初步记录缺陷信息;为提高识别准确性,设计了排除缺陷镜像的方法;第二步,基于明场显微成像技术沿通光面对已知缺陷进行轮廓提取。采用LED白光源从光学元件后表面照明,对缺陷进行显微成像;采用了基于图像清晰度评价的自动对焦算法,保证成像系统获取准确对焦的缺陷图像;设计了缺陷的轮廓提取算法,实现对缺陷特征的定量表征。为验证本文检测方案的有效性,设计并研制了针对大口径光学元件振幅型体缺陷检测系统。根据检测需求,将检测系统技术指标进行了分解设计,对光源照明模块、图像采集与控制模块、高精度位移平台等部件进行了功能设计。为提高检测效率,对成像模块扫描路径及照明口径进行了优化设计。基于检测系统,开展了缺陷识别能力、缺陷定位精度、缺陷提取精度、效率提升的验证实验。实验发现,检测系统识别缺陷的能力优于人眼,定位偏差不大于1.3mm;缺陷提取结果与显微镜偏差不超过7.2%;采用本文效率提升方案扫描口径为400mm×400mm×50mmm的元件,检测效率提升最大51倍。实验结果表明,本文检测方法可用于对大口径光学元件振幅型体缺陷的识别与提取,研制的检测系统适用于大口径光学元件振幅型体缺陷的工程化检测。