色玻璃凝聚框架下的高能质子-原子核碰撞的研究

来源 :华中师范大学 | 被引量 : 0次 | 上传用户:mochi7momo
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
早在20世纪90年代,人们就提出了色玻璃凝聚(Color Glass Condendate,CGC)的想法去描述参与碰撞的高能强子中的小动量份额胶子的剧增以及最终达到饱和的现象,那时欧洲的大型强子对撞机(Large Hadron Collider,LHC)和布鲁克海文(Brookhaven)国家实验室的相对论重离子对撞机(Relativistic Heavy Ion Collider,RHIC)还未启动。2012年,人们在大型强子对撞机上的高能重离子碰撞(heavy-ion collisions)实验中观察到似乎确有一种含有饱和胶子的新物质形态产生,给出了色玻璃凝聚物质形态存在的切实信号。本论文将介绍色玻璃凝聚理论框架下的色多极子(multipole)或多点关联函数(multipointfunction)在高能质子-原子和碰撞中扮演的重要角色,并计算八极子在大Nc极限下的解析表达式,并以此总结出一个2n极子的普遍解析表达式。我们以n=3为例演示怎样由我们总结的公式得到六极子的表达式。最后我们还讨论一种特殊情况:当多极子的坐标发生重合时多极子的表达式。然后我们将研究色玻璃凝聚理论框架下高能质子-原子核碰撞中产生的重夸克偶素(heavyquarkonium)和另外一个带电的轻强子之间的角关联。我们计算重夸克偶素与另外一个作为参考粒子的带电轻强子的角关联的第二阶傅里叶展开系数,也正比于通常所说的椭圆流(elliptic flow)。最近这个重介子和轻强子之间的角关联量刚被大型强子对撞机测到。实验结果显示重味介子(J/Ψ和D0)的椭圆流与轻强子的椭圆流几乎差不多大。我们的计算显示这个结果可以被很自然地理解为是高能质子中的部分子和原子核中的饱和胶子场的多重散射造成的。根据我们的计算,重夸克偶素的椭圆流似乎与该夸克偶素质量的依赖很小,所以我们预测r粒子应该与J/Ψ有差不多大的椭圆流。
其他文献
在自杀研究领域,学者面临的众多挑战中,最重要的便是能够敏锐、准确预测的能力,这种预测不仅是谁会/不会发展出自杀想法,还有谁会在何时将这种自杀想法付诸行动。而导致自杀预防进展受限的一个主要原因便在于,目前学术界对于自杀想法(suicidal thoughts)向自杀行动(suicidal actions)的转变缺乏足够的认识。大多数思考自杀的人并不会进一步采取自杀行动。相对较高的自杀意念检出率和较低
极端相对论能标下的重离子碰撞实验的根本目标是探测极端条件下的核物质。多粒子关联的研究已经被证明是探测和推进构成高能碰撞的粒子产生的潜在机制的有力工具之一。该论文一方面研究了在色玻璃凝聚框架和MV模型下的质子-原子核碰撞中的两粒子角关联。我们用威尔逊线表示与靶核中致密胶子散射的入射质子中的部分子的多重散射。在计算结果中,我们看到这些多重散射会产生有趣的关联,这些关联与我们的研究动机相吻合,并且可以部
强相互作用力(也被称为核力),是自然界四种基本相互作用力之一,它将核子(质子与中子)束缚形成原子核并支配着自然界中90%以上的可见物质。量子色动力学(Quantum Chromodynamics,QCD)是描述强作用力的现代理论。组成物质的基本单元—夸克与胶子,被强作用力禁闭在核子中,因此在自然界没有发现自由的夸克与胶子。高温高密核物质相图是核物理研究领域的前沿和热点。格点QCD预言在高温低重子密
实验证据表明,在相对论重离子对撞机(RHIC)上的高能重离子碰撞中产生了高温高密强耦合的新物质形态夸克胶子等离子体。在非中心碰撞中,整个系统的角动量可以到达1000h,理论研究指出由于自旋与系统角动量耦合,夸克的自旋会平行于系统角动量,在碰撞系统演化的最后阶段以产生的粒子的全局极化的形式部分地显现出来。实验中,这种全局极化的效应可以通过测量∧超子的全局极化(PH)参数和Φ介子的自旋排列(P00)参
信息技术的飞速发展在改变了人们行为方式的同时,也使得理解人类的学习行为进入一个新时代。社会认知理论(Social Cognitive Theory,SCT)认为人的信念和行为的改变是观察学习、亲历学习和自我调节共同作用的结果,是揭示人的思想和行为规律的影响力最大的社会心理学理论。近些年来,伴随着复杂网络和复杂性科学研究的兴起,基于SCT的研究不再被局限在实证研究之内,关于SCT的动力学模型研究逐渐
新中国成立以来,中国农村社区进行了一系列的整合和革新,回顾和梳理农村社区治理模式的历史变迁脉络,对乡村振兴和农村社区治理现代化具有重要的实践和理论意义。在特定的社会历史阶段催生了不同的农村社区治理模式,推动了农村经济社会发展。党的十九大以来,以乡村振兴为抓手,积极探索新型农村社区治理模式,不断推进农村社区治理现代化,通过夯实集体经济、倡导多元协同治理、发挥文化引领作用、引进优秀人才来实现城乡协同发
在美国布鲁克海文国家实验室的相对论重离子对撞机(RHIC)和欧洲核子中心的大型强子对撞机(LHC)进行的超相对论重离子对撞实验中,我们能够在极小的区域内沉积极高的能量,创造出的极端高温、高密的环境,从而将原本禁闭在强子束缚态的夸克和胶子解禁闭,进而产生出一种全新的物质形态——夸克胶子等离子体(QGP)。夸克胶子等离子体存在很短时间,在其形成之后便会开始膨胀,并在演化过程中逐步地冷却,部分子最终又会
细胞内离了或分子传输是维持生命体物质交换和信号传递的基础,与生物体的生理和病理行为密切相关。由于细胞膜上的生物通道具有不稳定性,无法有效地应用于体外研究。因此,利用仿生纳米通道构建特殊门控,研究分子传输机制,对于理解复杂的生命过程具有非常重要的意义。如何构建高选择性及可调控的纳米通道探究分子传输机制是当前纳米孔道发展中需要解决的关键问题。基于此,本论文提出结合超分子识别与自组装的优势,设计将二元的
对物质的相以及其性质的研究是一个重要的科学问题。一个基本的物理问题是:当物质极度加热以及压缩将发生什么。在非常高的温度以及致密的情况下,强相互作用的基本自由度变为夸克和胶子。量子色动力学(Quantum Chromodynamics,QCD)——描述了夸克和胶子之间的相互作用,是强相互作用的基本理论,它也是自然界四大基本相互作用中之一,并且还是粒子物理标准模型的一部分。在低温低密的时候QCD物质的
铜锌超氧化物歧化酶(SOD1)催化O2·-歧化为H2O2与O2,对保持胞内活性氧(ROS)的内稳态起到非常关键的作用,是体内重要的抗氧化物酶之一,主要分布于胞浆、线粒体膜缝隙处和细胞核内。SOD1也是调控细胞内氧化还原信号转导的关键蛋白质之一,参与调节多种细胞过程。作为一种蛋白质药物,SOD1具有抗氧化、抗炎、抗癌、防衰老等作用,但是作为一种大分子蛋白质药物,SOD1本身并不具备穿透细胞膜的能力,