无人潜器部署与任务规划技术研究

来源 :哈尔滨工程大学 | 被引量 : 0次 | 上传用户:zhufutao2
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自主水下航行器(AUV)以其自主能力强、机动性好、可遂行复杂任务等特点,成为水下装备研究的热点。AUV和AUV编队已经成为捍卫海疆安全、维护海洋权益、感知海底环境等相关海洋活动的首选平台。针对多AUV开展任务规划、部署规划和航迹规划等研究,对于提升AUV综合效能、降低部署成本、提高自主程度、拓展任务空间、改善任务效率等具有重要意义。本文从AUV任务规划、部署规划和航迹规划的角度,以AUV运动学和动力学为基础,针对各层次规划需求,完成了相应规划算法。本文主要研究内容包括:
  针对对抗环境中多AUV对抗建模问题,建立了基于生物数学的多AUV对抗模型。对三方AUV部署对抗、协作共存的过程,引入生物数学竞争和捕食系统模型,以生物种群生存灭绝的过程描述三方AUV对抗、协作的过程。在此基础上,以生物种群生存和灭绝条件分析多方AUV对抗的分布,同时也给出了对抗模型的全局渐近稳定性的充分条件,解决了多方AUV部署的对抗、协作建模问题,为AUV编队部署规划提供模型支撑。
  针对不规则边界环境下多AUV部署问题,设计了基于粒子群算法的多AUV部署区域规划算法。首先建立边界曲线模型和AUV观测区域图形模型,利用几何图形及几何位置关系描述AUV在不规则边界区域内的分布,解决不规则边界建模困难问题。然后设计基于粒子群算法的多AUV部署区域规划算法,解决不规则边界、AUV探测区域不同带来的多目标、多约束规划问题。所设计部署区域规划算法能够实现多AUV在不规则边界附近快速、高效的部署。
  针对AUV路径规划问题,设计基于径向基函数(RBF)和粒子群算法融合的AUV路径规划算法。首先基于粒子群算法设计AUV路径规划算法,在考虑洋流的基础上实现无碰撞航路的规划,然后引入径向基函数设计融合径向基函数的改进粒子群算法,解决基于粒子群规划出的AUV路径不平滑问题。并利用Metropolis准则改进粒子群算法,避免粒子群算法陷入局部最优问题。所设计的AUV路径规划算法能够高效、高质地实现无碰撞、平滑路径的规划。
  论文较好地解决了多AUV任务规划、部署区域规划和航迹规划问题,为AUV的设计和研制提供了有益参考,为改善水下无人自主平台智能化水平提供了有力补充。论文所设计的方法具有较好的普适性,能够拓展应用到航天器编队、无人机编队和水面舰船编队等无人平台。
其他文献
无人潜航器(UUV)的回收控制在整个UUV的控制过程中至关重要。当前大多数关于UUV回收的研究中,回收母船都是静止的,动基座UUV回收研究甚少。在整个动基座UUV回收过程中,UUV与回收母船都处于运动中,两者的运动随着相互接近会互相干扰,UUV不仅要克服各种复杂约束限制,抵抗外界干扰,还要处理UUV与回收母船受干扰后发生碰撞的情况,所以,动基座UUV跟踪与对接阶段的研究具有一定难度。因此,在动基座
基于陀螺与星敏感器组合的姿态估计系统,广泛地应用于对姿态估计精度要求较高的航天器。由于航天器姿态估计模型呈现出较强的非线性特性,姿态估计一般使用非线性滤波算法。这些算法往往是卡尔曼滤波器的扩展形式。基于高斯滤波框架下的非线性卡尔曼滤波算法是在假定系统噪声和量测噪声均为高斯白噪声前提下获得滤波解。然而,从航天器的动态模型的推导方程式或从离散形式的航天器轨道运动学方程可知,姿态估计系统的噪声的概率密度
学位
张量广泛应用于信号处理、大数据科学、高阶马尔科夫链、机器学习和量子计算等领域中。近年来,张量特征值问题被提出并受到人们广泛关注和研究,它在齐次多项式系统、超图谱理论、超图划分、自动控制、图像处理、高阶马尔科夫链和多项式优化等领域有着重要应用。非线性系统是重要的动力学系统。稳定性是系统的一个基本属性,是系统理论研究中的重要问题,使用张量特征值研究非线性系统稳定性是一个新的研究课题,对系统的理论研究有
在实际的生活应用与社会生产中,存在许多具有复杂结构的系统,当系统内部存在相互关联的子系统时,该系统为耦合系统。耦合系统广泛地应用于众多领域中,包含航空技术、船舶发展、经济发展、工业制造以及农业生产等。然而子系统间的耦合联系令系统的分析与控制十分复杂,因此,为了更有效地控制耦合系统,系统的解耦研究是非常重要的。二阶线性系统的解耦研究具有十分重要的实用价值和理论意义,其广泛应用于诸多学科当中,如力学、
学位
蒸汽动力装置具有功率大,体积小,重量轻,振动小的优点,我国大型船舶多采用蒸汽动力装置,包括辽宁舰。但大型船舶蒸汽动力装置汽/水回路控制系统结构复杂、设备繁多、系统参数耦合关系复杂,还具有非线性及时滞等特点,系统运行过程中具有多个稳定工况及动态转换过程,系统工况多变且负荷干扰频繁。为保证大型船舶蒸汽动力装置汽/水回路稳定安全的运行,改善其控制效果,同时充分考虑到设备的实际动作能力及设备间耦合关系,进
随着联合用药趋势的增长,药物相互作用诱发的药物不良事件成为了临床实践的一大挑战。受限于药物上市前临床试验的时长和样本量,难免发生潜在的药物相互作用未被发现的情况。因此,药物上市后的药物安全监测系统成为研究和发现药物相互作用的一个重要资源和凭仗。自发呈报系统(Spontaneous Reporting System, SRS)和电子健康记录(Electronic Health Record, EHR
许多科学和工程问题的数学模型往往由偏微分方程所描述,而绝大多数的偏微分方程没有解析解,这为利用方程来解决实际的工程改造和工程控制设计等问题带来了很大的困难,因此数值求解偏微分方程便应运而生。此外,在科学和工程计算中往往要求数值解具有高精度、保持原模型的一些性质如能量守恒性等以及在长时间模拟下数值误差不会太大,而高精度守恒的数值格式能够满足这些“苛刻”的要求。本文使用变限积分法数值求解Klein-G
视觉传感器能够自动、非接触、实时的获取物体的距离、形状、位置、姿态、运动等丰富的外界环境几何信息,并且能对它们进行识别与理解。对于诸多视觉检测任务,大视场和高分辨率等多任务的需求越来越广,传统的同构视觉系统在包含自身优势的同时,在诸多应用领域中又凸显弊端,无法满足多任务需求。近些年计算机计算能力的提升以及机器视觉算法的发展,使得多目立体视觉,甚至更复杂的多目混合立体视觉和多传感器融合等能够完成上述
路径规划技术是提升水下机器人自主性的关键技术之一,优异的路径规划性能可产生力量倍增器的效果,使有人系统将注意力关注在更为复杂的任务上。路径规划系统的核心是在考虑自身机动能力的条件下,基于任务目标、环境条件、航行器剩余能量来自主决定预航行路线,同时保证水下机器人的安全性。本文以海流环境下的全局路径规划技术为研究内容,以航行时间和能量消耗作为优化目标,以稳态海流场、时变海流场、不确定海流场的顺序层层深
空间机械臂在在轨维修、在轨装配、辅助加注、辅助对接等在轨操作任务中占据着重要地位。现阶段越来越复杂的在轨操作任务对空间机械臂提出了更高的技术要求。控制技术作为空间机械臂的核心技术更是直接决定着在轨操作任务的成败。而现有对空间机械臂位置和姿态分别控制、逐关节迭代计算的控制方法不能满足高精度、高效率的控制需求。本文对空间机械臂控制技术进行深入研究,重点解决空间机械臂控制中机械臂位姿一体化建模问题、基于
学位