【摘 要】
:
芳香族挥发性有机化合物作为VOCs最主要的分支,严重影响了人类的生产生活,对其处理迫在眉睫。离子液体(ILs)低饱和蒸气压,高热稳定性,结构可设计性等自身良好特性及吸收捕集过程“零污染零排放零损失”等优势而被广泛应用为吸收剂。本文选取甲苯为代表,以ILs作为吸收剂来进行脱除甲苯的机理以及吸收过程优化的研究。具体研究内容如下:(1)将预测型热力学模型COSMO-RS模型应用到离子液体的筛选工作中,从
论文部分内容阅读
芳香族挥发性有机化合物作为VOCs最主要的分支,严重影响了人类的生产生活,对其处理迫在眉睫。离子液体(ILs)低饱和蒸气压,高热稳定性,结构可设计性等自身良好特性及吸收捕集过程“零污染零排放零损失”等优势而被广泛应用为吸收剂。本文选取甲苯为代表,以ILs作为吸收剂来进行脱除甲苯的机理以及吸收过程优化的研究。具体研究内容如下:(1)将预测型热力学模型COSMO-RS模型应用到离子液体的筛选工作中,从包括19种阴离子和15种阳离子的285种离子液体中筛选目标离子液体。综合考虑离子液体价格,粘度,热稳定性,合成条件,选择性等各种因素选取[EMIM][De]为目标ILs。此外,[EMIM][Ca],[EMIM][Pe],[EMIM][TF2N]对甲苯与[EMIM][De]对甲苯有着相同的选择性对数数量级:10000。选取此3种ILs作为参比ILs。(2)通过两步合成法合成目标ILs。对其进行纯化和表征,对合成后ILs进行密度,粘度,热分解温度等物性的测定工作,结果显示目标ILs已合成,且有着适中的粘度和密度,热分解温度均在215℃以上,其中[EMIM][TF2N]的热分解温度达到了418℃。(3)对不同ILs进行吸收实验研究,实验结果显示在13种ILs里目标ILs具有最高的甲苯吸收饱和容量,且遵循规律:[EMIM][De]>[EMIM][Pe]>[EMIM][Ca]>[EMIM][TF2N]。验证了COSMO-RS模型预测的准确性。此外,实验研究证明低温和高压是气体吸收的有利条件。同时,对再生离子液体的FT-IR与~1HNMR表明,吸收过程为物理过程。值得注意的是,在离子液体循环吸收19次后,饱和容量仅下降了0.2%。气质联用检测甲苯含量为7.2 ppm,表明了离子液体的高稳定性且降低了实验成本,有利于工业化的推广。(4)进行了离子液体与甲苯体系的热力学行为研究。不同温度,不同摩尔组成下的蒸气压数据显示,[EMIM][De]+甲苯<[EMIM][Pe]+甲苯<[EMIM][Ca]+甲苯<[EMIM][TF2N]+甲苯。蒸气压水平均小于同温度下甲苯饱和蒸气压,活度系数大于1,表明了ILs与甲苯之间存在着弱相互作用力,且阴离子烷基链越长,弱相互作用力越强。(5)应用量子化学计算、COSMO-RS模型计算,在分子原子水平上对ILs与甲苯相平衡行为和吸收实验现象给出了微观解释。羧基上双氧原子的π键与甲苯甲基和邻位上的氢原子之间存在氢键作用力;烷基链与甲苯苯环之间存在弱静电作用力。此外,烷基链的增长一方面使得羧基双氧原子的π电子向阴离子链增长的方向偏移,这种诱导效应减弱了羧基基团的极性,增大了整个阴离子的非极性能力,相应绿色等值面由阴离子的α,β碳氢原子向γ,δ碳氢原子扩展;另一方面放大了阴离子的体积效应。两种效应的堆叠使得整个阴离子与甲苯的静电相互作用力增强。氢键力和增强的静电力是体系热力学行为和吸收现象背后本质原因。
其他文献
新媒体环境下,各式各样的新媒体工具在提升教学质量和效率上发挥了积极作用,新媒体工具有诸多优点,但使用不当可能会造成负面影响。文章分析了新媒体环境对中职语文教学所产生的积极和消极影响,对中职语文教学中“新媒体”潜在应用价值进行阐述,结合实际,提出加大人才培养与人才引进力度、加强校园主题网站建设、完善网络监测机制、整合教学模式等中职语文教学延展与创新措施。
苯乙烯作为一种重要的有机化工原料,工业上主要以苯和乙烯经烷基化反应生成乙苯后脱氢两步法进行生产。相比传统工艺,甲苯与甲醇通过侧链烷基化反应一步生产苯乙烯工艺具有节能降耗、工艺路线短、原料成本低的优点。针对甲苯侧链烷基化制苯乙烯反应,目前已经证实该反应需要催化剂具有适宜的酸碱位点以及空间结构。层状复合氧化物(LDO)具有酸碱双功能特性以及层状二维结构,适用于催化甲苯侧链烷基化反应。本文以X分子筛为载
二硫化钼(Mo S2)因成本低、比表面积高等诸多优点常被用作助催化剂。它可与半导体材料如Cd S等复合,用于太阳能光解水制氢,促进太阳能的利用和清洁能源的提供。然而,半导体相Mo S2存在活性位点少、电子迁移率低等缺点,构筑Mo S2多孔结构是一种可行的改性方式。本文借助多种硅模板调控合成得到不同孔结构的Mo S2,随后将其与Cd S复合,通过可见光催化析氢反应来评估其催化活性,探讨具有高效助催化
氢能的电化学能源转换技术有望实现全球能源从化石燃料向可再生能源的过渡,其中氢燃料电池的兴起就是一大趋势。相较质子交换膜燃料电池(PEMFC),阴离子交换(碱性)膜燃料电池(AEMFC)能够使用非贵金属材料从而大幅降低成本。但碱性介质中的氢氧化反应(HOR)动力学明显慢于酸性介质,因此开发高效、经济的碱性HOR催化剂仍然是一个巨大的挑战,这需要理解碱性HOR机理,关联结构与性能。本文制备了不同结构的
随着经济社会的发展,水资源匮乏问题日益严峻。大气集水可以从无处不在的大气水分中直接获取水,是一种极具发展前景的集水方法。金属有机骨架材料(MOFs)在大气集水过程中发挥着至关重要的作用,但其成型后吸附性能骤减。因此,制备一种MOFs成型吸附材料,尤其是在低水蒸气分压时吸附性能良好备受青睐。本文以具有规整有序大孔结构的聚异丙基丙烯酰胺(PNIPAM)、聚丙烯酸酯(PA)为载体,在其内部原位生长具有高
可再生能源技术的发展离不开电催化剂,但由于贵金属储量稀少且价格高昂,严重阻碍了其商业化应用。多功能电催化剂能在同一能量转换装置中实现多个电催化过程,有利于简化系统构建并降低成本。因此,开发高效、低成本且能同时加速氧还原/析出反应(ORR/OER)、氢析出反应(HER)的非贵金属多功能电催化剂迫在眉睫。本文首次使用价格低廉的金属有机小分子1,1’-双(二-苯基膦基)二茂铁(DPPF)作为Fe源和P源
化工技术的产生与发展是人类社会生存和发展的基础,也带动了经济的高速发展。但化石燃料的大量使用给环境带来了严重的污染。氢气作为一种重要的低碳能源,燃烧过程绿色无污染,可代替化石能源,有助于“碳达峰和碳中和”目标的实现。电解水制氢是一种有效的制氢方式。目前在制备双功能碱性析氢反应和析氧反应电催化剂方面取得了一定的进展,但所制得的催化剂价格昂贵且难以在大电流密度下长久有效的运行,阻碍了它们的实际应用。因
含硫柴油燃烧会对环境造成危害,因此有必要对其进行脱硫处理。离子液体氧化脱硫技术,具有反应条件温和及脱硫效果较好等优点,但普通离子液体存在脱硫时间较长及不易回收等问题。对此,本论文研究了功能化离子液体在柴油氧化脱硫中的应用。本文共制备了两种脱硫体系,一种是由Co Fe2O4磁性纳米颗粒和磁性离子液体组成的磁性脱硫体系,另一种是温度响应型离子液体,选取30 wt%H2O2作为氧化剂,分别对初始硫含量为
以石墨为负极的锂离子电池由于负极的理论比容量(372 m Ah g-1)较低,无法满足新兴领域对高能量密度储能器件的需求。金属锂具有极高理论比容量(3860 m Ah g-1)和最低氧化还原电位(-3.04 V vs.标准氢电极),被视为最有潜力的负极材料之一。然而,在循环过程中,固体电解质界面(SEI)层不稳定,枝晶生长不可控,巨大的体积变化等严重限制了锂金属负极的实际应用。SEI层在锂均匀沉积
自2019年12月以来,为了对抗新型冠状病毒肺炎疫情(COVID-19),国内外产生了大量废弃一次性医用口罩。口罩在自然界中难以降解,造成了很大的环境污染,对废弃口罩进行有效回收处理在全世界范围引起了广泛关注。口罩由无纺布、耳带、鼻梁条三部分组成,其中无纺布的占比最大,其主要成分是聚丙烯。热裂解是聚丙烯转化为小分子燃料油的常用方法,对热裂解挥发物进行催化裂解可以提高气体产物收率,降低液体产物收率,