一种三自由度编码单光子的指示放大方法

来源 :南京邮电大学 | 被引量 : 0次 | 上传用户:Disama
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在量子通信研究中,光子由于其可操作性和高速传输特性而成为主要的信息载体。光量子比特和光子纠缠是量子通信领域的重要资源,在量子隐形传态(QT)、量子密钥分发(QKD)、量子安全直接通信(QSDC)等领域有着广泛的应用。在远距离量子通信中,光子传输损耗是量子通信的一个重要障碍,光子传输损耗导致光子在光纤中的传播随着信道长度的增加呈现指数式衰减。光子传输损耗不仅严重影响量子通信的通信效率,限制通信长度,而且威胁量子通信的安全性。为了解决上述问题,量子无噪声线性放大(NLA)被提出,可以有效保护单光子量子比特和量子纠缠。本文第一个工作利用不完美的单光子源辅助,实现了极化-双纵向动量三自由度编码单光子的无噪线性放大。在单光子的多个自由度同时编码能有效提高单光子的信道容量,从而提高量子通信的通信效率。实验上已经实现了在单光子的极化、双纵向动量等三个自由度同时进行编码。本文的方案可以有效提高输出态的保真度,并在所有自由度中保留它们的编码特征。该方案可以进一步拓展到双光子超纠缠态系统。本协议使用的是线性光学器件,可以在现有的实验条件下实现,具有更强的实用性。本文第二个工作提出了一种基于单光子源的设备无关量子安全直接通信(DI-SQDC)协议。DI-QSDC允许发送方直接向接收方发送秘密消息,而无需先共享密钥,且能抵御所有来自不完美设备端的攻击。在本文中,我们介绍了利用单光子源和指示型结构的新型DI-QSDC协议。该方案的安全信息容量以及最大通信距离明显优于之前的DI-QSDC方案。因此,有望在未来量子网络建设中发挥作用。
其他文献
近年来,柔性电极因其在可穿戴器件、软体机器人和电子皮肤等方面的应用引起了人们的广泛关注。柔性电极由柔性衬底材料和柔性导电材料构成。现有的柔性电极大多数是使用密闭的衬底材料制备。这些柔性可拉伸电极不具有透气性,无法满足长期佩戴的舒适性要求。为了解决这一问题,亟需开发一种新型柔性透气电极材料。本论文提出了利用呼吸图法制备的多孔透气TPU薄膜为衬底,与一维纳米线、二维纳米片导电网格结合制备柔性透气电极的
学位
电致发光变色材料是有机光电功能材料领域新兴研究方向,在信息显示、信息安全和数据传输等领域具有极大的应用潜力,但是由于其发展相对缓慢且受材料种类和设计策略的限制还未应用于商业化。现有的电致发光变色材料多为有机小分子荧光染料和聚合物,其电响应单元常通过氧化还原电子转移猝灭材料发光。相较于纯有机材料荧光发射,磷光铱配合物由于其高效的发光效率、易调节的发射波长和丰富的激发态性质等优点,能够实现更丰富的发射
学位
基于6G建立空-天-地-海一体化的愿景,以及无人机(Unmanned Aerial Vehicle,UAV)的高移动性、易于部署且以高概率建立视线链路的优点,无人机被广泛应用于辅助无线传感器网络(Wireless Sensor Network,WSN)通信领域,以解决传感器网络能量有限问题以及突破其能量消耗对无线传感器网络性能限制的瓶颈。目前针对无人机辅助无线传感器网络通信的相关内容研究十分丰富,
学位
近年来,细菌感染引发的疾病导致全球公共卫生问题层出不穷,每年因细菌感染所导致的经济损失就高达数十亿美元。细菌感染不仅阻碍了社会经济的发展,更对人类的生命安全造成了威胁。因此,如何实现细菌感染源的早期发现以及快速确定细菌类型成为应对细菌感染的有效防治措施。细菌检测作为预防细菌感染的有效手段在环境监测、食品安全和医学诊疗等领域受到了人们的广泛关注。传统检测方法具有检测周期长、检测程序复杂、对样品要求高
学位
近年来,受“互联网+物流”强大力量的影响,公路运输需求越来越大,随之而来的问题也越来越突出。公路货运市场不仅集中度低、交易效率低,而且小物流企业数量多且无序,货运司机超过了3000万人,承担着超过70%的总货运量。因此,信息不对称和失真问题非常严重,这也造成了货找承运人难,承运人找货难的普遍状况,这种交易模式非常不利于货运市场的长期发展。根据相关数据统计,自2014年车货匹配货运平台快速涌现以来,
学位
传统化石能源如煤炭、石油、柴油的大量使用直接导致温室气体、雾霾、环境污染等环境问题,大力发展清洁可再生能源是解决这些问题的重要手段之一。在研发能源存储器件的过程中,钠离子电池、超级电容器、铝空气电池等新型储能设备逐渐走进人们的视野。其中超级电容器以其出色的电化学性能引起了科研工作者的广泛关注。本论文通过固态前驱体法合成了一类具有独特叠层状、片层中存在丰富孔道结构的类方塔状镍基金属有机框架材料,系统
学位
RCr O3表现出极其丰富的磁行为,如低温磁化反转、磁相变、自旋重取向、负磁化行为等,因此得到了广泛研究。离子掺杂一直是一种调控磁性的有效方法。本文采用X射线精细结构(XAFS)技术研究了非磁性离子Ga掺杂的RCr O3(R=Ho、Sm、Lu)体系样品电子结构和局域结构,为磁性机理解释提供了结构数据支撑。1.研究了Ho Cr1-xGaxO3(x=0,0.1,0.2,0.3,0.4)系列样品的XAF
学位
自2018年教育部提出“金课”概念以来,作为五类“金课”之一的“虚拟仿真金课”就备受研究者的关注。虚拟仿真实验为学生提供自主解决问题的仿真实验情境,已逐渐成为促进学生学习、培养学生能力的重要手段,而元认知能力是学生学习能力的重要体现。学生进行虚拟仿真实验学习的过程与学生的元认知活动密不可分。基于此,本研究探讨虚拟仿真实验对大学生元认知能力的影响。本研究在梳理以往文献的基础上将虚拟仿真实验内在特性总
学位
随着数据流量的增长、数据速率需求的提高,第六代移动通信(Sixth-generation,6G)网络除了需要支持高数据速率外,还要确保高吞吐量、可靠性和定制灵活性。而可重构的智能表面(Reconfigurable Intelligent Surface,RIS)是促成这种新的智能无线电环境实现的关键因素,具有功耗低、成本低、配置灵活的优点,可以应用于辅助通信,通过优化反射信号的相移来优化性能。全双
学位
钾资源储量丰富、标准电极电位较低且溶剂化K+在电解液中的迁移率高。故开发高性能的钾离子电池被认为是解决因锂资源短缺导致的价格高涨和弥补储能市场供不应求问题的有效途径。然而,钾离子半径大,在材料中进行固相扩散困难,且离子脱嵌过程易造成材料的结构形变。这导致钾离子电池缺乏具有高容量、高氧化还原电位和良好结构稳定性的正极材料来满足使用需求。研究报道显示,二元铁锰层状过渡金属氧化物正极(KxFe0.2Mn
学位