论文部分内容阅读
近年来,物流业在社会经济发展中发挥着越来越重要的作用,同时也带来了严重的能源和环境问题。合理规划物流车辆的配送路径被视为降低物流企业运营成本、缓解能源短缺和环境污染的重要途径之一。本文以物流车辆节能配送路径优化问题为研究对象,综合考虑配送时间窗要求、车辆配载约束、载重和速度对车辆能耗因子的影响,构建整数规划模型,并利用改进的蚁群算法进行求解,以最少的能源消耗实现节能配送。本文的主要研究内容如下:首先,按照不同分类标准将车辆路径优化问题进行分类,并对常用算法的特点进行分析。其次,考虑货车受车厢尺寸和最大载重量的限制、车辆能耗因子受车速和货车载重的影响,分别构建三维装箱数学模型和车辆综合油耗计算模型。进而,以三维装箱模型为约束条件,以配送方案油耗最低为优化目标,构建考虑三维装箱和时间窗约束的时间依赖型节能配送路径优化问题数学模型。再次,针对以上模型,对蚁群算法进行了如下改进:第一,在考虑客户点周边路网条件、货物需求特征的基础上,提出可将车辆临时停靠在道路另一侧的备选停靠点处,以减少因配送车辆只能停靠在客户所在道路一侧可能造成的迂回运输,进而减少能耗;第二,利用模拟退火算法求解三维装箱约束模型,在满足车辆载重约束的同时,也满足货物不相互重叠、先卸后装等约束;第三,以油耗为标准更新蚁群信息素浓度,达到逐步优化配送方案、降低油耗的目的;第四,基于初步优化结果,考虑车速对车辆能耗因子的影响,结合路网动态交通信息,通过调整配送车辆从配送中心及各客户点的出发时刻,实现对配送方案总油耗的进一步优化。最后,利用北京市实际路网和动态交通数据,构造6个不同客户点数量规模的配送案例,并采用以上所提出的数学模型和蚁群算法进行求解。计算结果表明,相对于传统方法,本文所提出的优化方法可使物流配送油耗量最多可降低25.52%。