论文部分内容阅读
伴随着激光技术越来越多的进入到人类生活的方方面面,科研工作者对于激光技术的研究也越来越广泛与深入。其中处于固体激光核心地位的激光增益介质对于激光器的激光性能起着至关重要的作用。增益介质的基质材料作为激活离子的载体决定了激活离子能否顺利且有效的进入激光材料,并且也决定了激光材料的热学性能、基本理化性能等;而作为介质发光中心的激活离子由于自身具有丰富的能级以及特征的核外电子排布,可通过能级跃迁向外界辐射能量,进而决定着激光材料的光谱特性。LGS(La3Ga5SiO14)晶体及其同型化合物是一类具有优异性能的压电材料。这些电学上的特点也引起了人们对于探索该类晶体能否成为具有多功能性的全固态激光器件的强烈兴趣。其中LGS系列晶体存在一类由两个或两个以上原子占据同一氧配位体的有序构型-CNGS晶体。CNGS晶体属三方晶系,32点群,P321空间群,非中心对称结构,因此由其结构特点可判断CNGS晶体在非线性光学上也具有潜在的应用价值。相比于LGS晶体,CNGS具有Ga元素含量低、优良的理化性质、良好的机械性能以及易于生长的特点。目前2-3 μm激光在当今社会的应用非常广泛。其中Tm3+在2 μm附近对应于3F4→3H6的能级跃迁,在800 nm附近对应有3H6-→3H4的谱线跃迁,其吸收带覆盖商用LD二极管泵浦的波长范围。Tm3+的电子可吸收LD泵浦至3H4能级,并会以无辐射弛豫的方式跃迁到3F4上激光能级以形成粒子数反转,大大提高了离子的量子效率。此外,Tm3+离子具有相对较长的激光上能级寿命,是典型的三能级系统,并且Tm3+激光器还是重要的可调谐激光光源。而在2.5-3 μm波长范围内,Er3+掺杂晶体由于4I11/2→→4I13/2的能级跃迁能够辐射2.8μm的中红外激光输出,Ho3+掺杂晶体由于5I6→→5I7的能级跃迁能够辐射2.8-3 μm的中红外激光输出。针对以上提及的问题及研究背景,本论文将CNGS晶体这一具有潜在多功能特性的光电材料结合稀土离子复杂能级的发光特性,以探索和研究该材料在近红外至中红外2-3 μm的光谱以及激光性能,其主要研究内容如下:1.Re:CNGS(Re=Tm,Er,Ho/Pr,Ho/Pr/Yb)晶体的提拉法生长工艺研究本论文利用提拉法分别生长了高质量单掺5 at.%Tm3+:CNGS、较高单掺浓度15 at.%Er3+:CNGS、共掺 1 at.%Ho3+/0.5 at.%Pr3+:CNGS 以及共掺 5 at.%Yb3+/1 at.%H03+/0.5 at.%Pr3+:CNGS晶体,对不同掺杂晶体的生长工艺进行了探索。在晶体生长过程中,我们在化学组份上对CNGS中Ca2+、Nb5+等阳离子格位进行调整,对温场进行改进,同时对课题组之前的CNGS晶体提拉法生长工艺的原料配比、固相合成方法以及生长工艺参数进行优化,通过合理调节生长气氛以及晶体尺寸,对每次晶体的生长条件以及晶体缺陷进行了分析,最终生长出了高质量稀土离子掺杂CNGS单晶。2.Re:CNGS(Re=Tm,Er,Ho/Pr,Ho/Pr/Yb)晶体结构与基本性能表征论文中我们分别对Tm:CNGS、Ho/Pr:CNGS和Yb/Ho/Pr:CNGS晶体的理论密度和实际密度进行了测量和计算,总体上CNGS的掺杂浓度与其密度呈现出正相关的关系。利用粉末衍射XPRD对晶体的物相进行了分析,确定了稀土掺杂后生长晶体与纯基质晶体的基本结构一致性,同时利用高分辨X射线衍射确定了晶体具有较高的结晶质量,并进一步拟合出了 Tm:CNGS、Ho/Pr:CNGS和Yb/Ho/Pr:CNGS 晶体的晶胞参数分别为 a=b=8.080A,c=4.996A,V=282.47A3、a=b=8.088A,c=4.980A,V=282.181A3与 a=b=8.078A,c=4.9920A,V=282.1081A3。利用Rietveld方法对Ho/Pr:CNGS晶体的结构进行了解析,得到了晶胞结构中的各原子坐标、原子间距、平均键长等数据,为后续的理论计算工作做了准备。最后,通过对生长晶体化学组份以及晶体生长质量的研究,确定了晶体稀土离子掺杂后各离子的掺杂浓度以及分凝系数。3.晶体热学性质的表征与研究作为固体激光增益介质,良好的热学性质是晶体至关重要的属性。介质具有较好的热学性能可以防止晶体在激光震荡时产生例如热透镜效应、介质开裂、光束质量差、多模输出等不利的影响。本论文对Tm:CNGS晶体的热扩散、比热、线性热膨胀进行了测试。计算得到了 Re:CNGS晶体的理论摩尔比热Cv为440.6J/(k·mol),Tm:CNGS的测量定压比热Cp为0.662]·g-1·K-1,略低于纯 CNGS 晶体的 0.578 J.g-1·K-1,而 Ho/Pr:CNGS 和 Yb/Ho/Pr:CNGS 晶体的比热相对于纯CNGS有所减小。同时,论文对Tm:CNGS晶体的热膨胀性质进行了研究,Tm:CNGS沿物理学X、Z轴的线性热膨胀系数分别为αX=5.88×10-6 K-1与αZ=7.07×10-6 K-1,与纯CNGS相比Tm:CNGS在温度升高时的热膨胀各向异性要更加明显。相比于钒酸盐体系与硼酸盐体系,Tm:CNGS具有较小的热膨胀系数与热膨胀各向异性。在热导率方面,Tm:CNGS晶体的热扩散系数随温度变化幅度较小,但总体趋势表现为温度越高,晶体的热扩散系数越小。300℃时,Tm:CNGS晶体在X方向和Z方向上的热扩散系数λx和λz分别为0.686 mm2 s-1和 0.773 mm2 s-1,热扩散系数分别为 κx=2.963 W/m·K,κZ=3.338 W/m·K。4.Tm:CNGS晶体的光谱性能表征与研究基于Tm3+在2μm的荧光特性,本论文对Tm:CNGS的吸收光谱、荧光光谱以及激光能级寿命进行了测量,最后对Tm:CNGS的连续激光性能进行了表征。对于Tm:CNGS的吸收特性,从400nm至2000nm区间,Tm:CNGS的非偏振吸收光谱在685 nm、793 nm、1211 nm和1669 nm处有强的吸收峰,对应于Tm3+的3H6→3H4能级跃迁,且位于商用LD泵浦源输出波长793 nm处的吸收系数、FWHM和吸收截面分别为2.96 cm-1、15 nm和5.01 × 10-21 cm2。在荧光特性方面,在1888 nm附近的发射峰具有最大的荧光强度,其FWHM约为164nm,且对应于Tm3+的3F4→3H6跃迁2 μm附近的荧光衰减约为2.345 ms。5.Tm:CNGS晶体的连续激光性能表征与研究在Tm:CNGS连续激光的测试中,调节泵浦源与谐振腔参数为纤芯直径100μm、聚焦系统1:2、输入镜IM为R=-200 mm,Toc=5%时可获得最优输出,当泵浦功率为5 W时,可获得最大功率为740mW的2 μm近红外激光震荡,其最大光转换效率为14%,斜率效率为17.07%。