论文部分内容阅读
本文以贵州遵义地区提供的镍钼矿焙砂为原料,提出了一种高效、环境友好、低成本的处理新工艺,工艺主要包括苏打浸出和季胺盐直接萃取(碱性萃取)两部分,制得纯钼酸铵溶液。试验表明该工艺具有工艺流程短、化学试剂消耗小,废水排放量小,易于工业化的优点。论文主要研究内容与结论如下:1.焙砂的苏打浸出首先对镍钼矿焙砂进行了常压浸出实验研究,结果表明,钼的浸出率最优达到87.40%,浸出渣中钼的含量仍有1%,常压浸出效果不理想。为进一步提高钼的浸出率,考虑采用苏打高压浸出。试验考察了苏打加入量、液固比、浸出温度、浸出时间对浸出的影响。结果表明,在浸出温度170℃,苏打加入量为矿样30%,液固比2:1,浸出时间90min的浸出条件下,钼的浸出率为95.83%,浸出渣中钼的含量0.296%。为抑制浸出液中杂质磷、砷、硅的浸出,考虑高压浸出时加入添加剂,通过对添加剂种类及加入量、苏打加入量及浸出温度等因素的讨论,得出最佳浸出工艺条件为:苏打加入量为矿样30%,氧化镁加入量为矿样的2.5%,温度160℃,液固比2:1,浸出时间90min。在此最优条件下,钼的浸出率为95.9%,浸出渣中钼含量为0.285%,浸出液中钼、磷、砷和二氧化硅的浓度分别为10.69g/L、0.18g/L0.32g/L、0.48g/L,硅钼分离系数为25。苏打高压浸出实验中钼与主要杂质实现了初步分离,为后续碱性萃取工艺减轻了除杂负担,在工业上具有较好的推广价值。2.苏打浸出液的直接碱性萃钼选择有机相组成为:350g/L TOMAC+25%仲辛醇+磺化煤油,有机相经转为碳酸型后用于萃取。结合考虑料液浓度及有机相的萃钼饱和容量,当萃取相比为1/2时,采用5级逆流萃取,钼萃取率为98.7%;萃余液中Mo浓度降至O.1g/L,杂质P、As、SiO2浓度分别为0.16、0.25、0.28g/L,因而萃取过程中杂质磷、砷、硅的去除率分别达到88.9%、89.3%和71.8%,仅有少量的杂质进入有机相。负载有机相用去离子水洗涤1次即可用于反萃。本研究采用斜率法验证了季胺盐萃钼机理为:MoO42-(aq)+(R3R’N)2CO3(org)=(R3R’N2)MoO4(org)+CO32-(aq)采用2.84mol/L NH4HCO3,相比O/A=2/1,通过15级逆流反萃,钼的反萃率达到95.8%,反萃液中钼和杂质P、As、SiO2浓度分别为34.5、0.0066、0.025和0.39g/L,钼与杂质的浓度比P/Mo、As/Mo、 Si/Mo分别为0.00019、0.00071和0.011。通过计算,可知在碱性萃取-反萃过程中,杂质P、As、Si的去除率分别为99.15%、97.97%和77.39%,因而,该过程在富集钼的同时具有很好的除杂效果。反萃后有机相用再生剂NaOH处理可循环利用,实验结果表明:当NaOH用量为理论数的1-1.25倍时,再生后的有机相用于萃取的效果较佳;同时提高再生相比可提高试剂NaOH的利用率和分相效率。萃余液补碱返回一次高压浸出的浸钼效果良好。采用萃余液循环浸出的实验结果表明:当S042"<90g/L,硫酸根对钼、磷、砷、硅浸出率的影响不大,硫酸根不断积累;依据硫酸根循环浸出积累模拟模型,最终硫酸根浓度不会超过58g/L。这为水相的循环再用提供可能。苏打高压浸出-碱性萃取工艺的优势在于:工艺简单,流程短,钼收率高,试剂消耗和废水排放量均少;萃余液可返回苏打浸出,且整个反应体系为碱性,对设备防腐要求低。故该工艺在工业上具有很好的应用前景。