【摘 要】
:
本文以气动人工肌肉驱动的气动运动模拟平台为研究对象,研究该运动模拟平台偏转运动的轨迹跟踪控制。由于空气的可压缩性、气动人工肌肉的柔性以及平台负载的变化等不确定性因素给该实验平台的控制带来了难点与挑战。本课题主要考虑自适应补偿控制策略来处理气动运动模拟平台系统中存在的未知参数和总和扰动问题,提高气动运动模拟平台在不同的模拟运动下的控制精度与响应速度。首先,介绍了本文的研究背景与本文所用控制算法的研究
论文部分内容阅读
本文以气动人工肌肉驱动的气动运动模拟平台为研究对象,研究该运动模拟平台偏转运动的轨迹跟踪控制。由于空气的可压缩性、气动人工肌肉的柔性以及平台负载的变化等不确定性因素给该实验平台的控制带来了难点与挑战。本课题主要考虑自适应补偿控制策略来处理气动运动模拟平台系统中存在的未知参数和总和扰动问题,提高气动运动模拟平台在不同的模拟运动下的控制精度与响应速度。首先,介绍了本文的研究背景与本文所用控制算法的研究现状。说明了气动运动模拟平台的机械结构、动力回路和控制回路,介绍了气动运动模拟平台的组成部分、应用测控软件和主要气动元器件及其工作原理,并且详细介绍了本文所用气动运动模拟平台的控制过程。其次,针对气动人工肌肉驱动运动模拟平台单关节转动系统的跟踪控制,利用跟踪微分器安排过渡过程获得期望信号的跟踪信号和微分信号,设计自适应扩张状态观测器估计单关节转动系统中的未知状态和扰动,并且将系统中未知参数通过自适应率进行估计。根据估计的状态和参数基于反步技术设计自适应反步控制器,并且在控制器中补偿所估计的扰动。通过实验证明了所设计的控制方法能气动运动模拟平台在变负载和变幅值条件下达到较高的控制精度和响应速度。再次,针对气动人工肌肉中存在的死区问题,采用自适应控制的方法,对死区的压力阀值进行了估计和补偿。此外,通过反步技术设计反步扩张状态观测器,并且通过李雅普诺夫方法理论证明该反步扩张状态观测器能达到有限时间收敛。实验证明,基于反步扩张状态观测器的自适应控制使气动人工肌肉驱动运动模拟平台单关节转动系统得到更高的控制精度和更快的响应速度。最后,针对气动运动模拟平台二自由度偏转运动的角度姿态控制,采用Tornambe控制器处理二自由度偏转运动动态系统中存在的耦合、未建模动态等非线性干扰。使用跟踪微分器去处理误差信号,实现了在高斯白噪声干扰下的气动运动模拟平台二自由度角度姿态控制。
其他文献
根据国家对矿区尾矿矿渣污染物减排监控过程中的关键科学问题,围绕着化学溶液作用下铁矿渣污染物释放规律,展开一系列室内模型试验,主要以室内浸泡试验为主,结合对矿渣以及矿渣污染物的宏观和微观研究,通过测定矿渣中金属离子浓度随时间的变化,以及对矿渣样和浸泡液悬浮物的微观特性的研究,揭示化学溶液作用下铁矿渣污染物的释放规律,为尾矿库和矿渣堆场污染物的控制与治理提供理论依据。本文主要的成果包括以下几个方面:(
在新一轮科技革命的驱动之下,数字化、智能化和万物互联的趋势愈发明显。网络流量和终端数量呈现爆炸式增长,为云中心计算处理能力与网络传输带来巨大的负担。如何减小网络带
第五代移动通信(5th Generation Mobile Communication,5G)对高数据速率的需求激增,因此提高频谱效率很有必要。目前无人机(Unmanned Aerial Vehicle,UAV)作为一个新兴的研究
效能信念对人的行为具有调节作用,它不能引起人的行为,而是对人的行为的发生与否及结果产生调节作用。龙舟运动作为高度相互依赖的团队项目,运动员的集体效能感水平对运动队
随着高速铁路的飞速发展,人们对高移动场景下的数据传输速率以及可靠的移动业务的需求与日俱增。因此,高铁通信对高速率、大带宽且具有服务质量保证的数据业务要求提高了。毫
卫星导航定位技术是当今应用较广,技术较完善的高精度导航定位方法。当GNSS信号正常接收时,系统导航定位精度可以达到厘米级。但是在一些复杂环境,如:隧道、城市、森林及一些
面对陆地资源日益匮乏、人类生存空间有限以及生态环境恶化的现状,国际社会把目光逐渐聚焦海洋。深海(6000-11000米的深度区间)勘探活动的增加促进了大深度载人潜水器的发展。载人舱是深海载人潜水器中主要承压部件,而观察窗设计是载人舱研究的关键技术之一。在深海超高压工作环境中,以观察窗为代表的载人舱开口结构对于保障潜水器安全性和可靠性至关重要。本文以大深度载人舱观察窗作为研究对象,以其基本力学性能、
目前,随着我国的经济发展水平越来越好、城镇化的水平越来越高,人口密度也越来越大,环境污染也变得异常严重起来,这些因素导致人们的日常生活成本增加,人们遭受的经济压力也
粘性力在流化过程中会影响颗粒的运动,当粘性力作用较大时可能导致流化床效率降低甚至床层结焦、结渣,影响正常安全生产。为研究颗粒粘性对流态化的影响,本文运用离散单元法(
波达方向(direction-of-arrival,DOA)估计是利用接收信号的某些信息对信号入射方向进行估计的过程,其在航天、军事等多个领域都有重要应用。DOA估计的过程中,信号的接收由多