广州市河段和湖泊轮虫群落结构的研究

来源 :暨南大学 | 被引量 : 0次 | 上传用户:x21501027
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
2005年12月—2006年11月,对珠江广州河段及天河、流花公园内的湖泊进行了初步研究。经鉴定,共发现轮虫77种。其中湖泊的优势种根据数量多少依次为暗小异尾轮虫(Trichocerca pusilla)、微型多突轮虫(Liliferotrochasubtilis)、裂痕龟纹轮虫(Anuraeopsis fissa)和剪形臂尾轮虫(Brachionusforficula),而河口则是微型多突轮虫(Liliferotrocha subtilis)、裂痕龟纹轮虫(Anuraeopsis fissa)、暗小异尾轮虫(Trichocerca pusilla)、角突臂尾轮虫(Brachionus angularis)和尾突臂尾轮虫(Brachionus caudatus)。轮虫数量的两次高峰分别出现在2、3月份和8月份。全年最高密度为5494 ind./L(中大,2005年12月),最低密度为117 ind./L(中大,2006年7月)。枯水期,轮虫密度较高,丰水期,轮虫密度较低。4个采样点轮虫年平均密度以天河采样点最高(1260 ind./L),中大采样点次之(1123ind./L),黄埔采样点再次(737ind./L),流花采样点最低(718ind./L)。体型较小的轮虫(如暗小异尾轮虫、裂痕龟纹轮虫等),在4个采样点密度都比较高;而体型较大的轮虫(如晶囊轮虫、萼花臂尾轮虫),在河口采样点(中大、黄埔)相对较多。径流量、盐度是造成河口和湖泊轮虫密度以及种类组成差异较大的重要因素。此外,轮虫的密度还受到温度的影响。研究结果表明轮虫在河流和湖泊生态系统中具有重要作用。
其他文献
在对粒子群优化算法进行了详细的分析和介绍了标准的PSO算法的基本原理、数学描述、算法参数和流程基础上,再介绍本文的主要工作。首先,在离散序列领域对粒子群优化算法进行重构,提出了本文的改进思路,即把可变社会影响因子引入离散序列领域的计算公式。与标准的粒子群优化算法相比,该算法在避免过早的陷入局部最优等方面有比较好的效果。针对TSP问题,重新设定参数,引入公共知识库进行粒子群初始化,用改进的PSO算法
令A=Z[v]?,兵中m是v-1和栗奇素数p生成的理想,v是未定元.A’=Q(v)是A的分式域,(aij)n×n是对称Cartan矩阵,令U’是A’上相伴于对称Cartan矩阵(aij)n×n的量子代数.U是U’的由EiN,FiN,Ki,Ki-1(i= 1,2,...,N≥0)生成的A子代数,则U是A-Hopf代数.本文讨论了函子D(-),H(-)及诱导函子H~0(U/Ub,-)的系数扩张的若干性
对称多项式是多项式不变量的一个最基本例子.不变理论研究的主要问题是不变环的生成元集合,生成元之间的定义关系及环结构等等.本文给出单个泛n×n矩阵在CLn的共轭性作用下的不变量环的生成元集合,即证明了若GLn在代数k[xij]的作用为:g:xij→yij, j = 1,…n,则不变量代数k[xij]GLn由X的特征多项式的系数所生成.由此还推出不变量代数k[xij]GLn由X的幂和的迹tr(X),t
代数曲面的隐式化,主要解决的问题是(1)对定义曲面的参数方程消去参数变量;(2)找出包含代数曲面的最小代数簇.本文利用Groebner基理论研究代数曲面的隐式化,实际上是把参数方程看成映射F:Pm(k)→Pn(k),隐式方程即为包含这个曲面的最小的代数簇.当k为无限域时,证明了(1)若基点集B=Φ,则F(Pm) = V(Im+1),(2)若基点集B≠Φ,则F(Pm\B)(?)V(Im+1),且V(
本文主要研究跳扩散随机微分方程数值解的性质、数值模拟方法以及在金融计算上的应用。全文共分三部分,主要内容如下。第一章,主要介绍与本项研究有关的数学基础知识,如:跳扩散随机微分方程的Ito公式,随机微分方程数值解的强收敛和弱收敛的定义,随机Taylor展开式,跳扩散随机微分方程,几种常用的跳扩散随机微分方程的数值模拟计算方法。第二章,首先证明了跳扩散随机微分方程应用Euler-Maluyama方法的
设A=Z[v]?其中1,是未定元、(?)是由v-1和某奇素数p生成的理想.A’=Q(v)是A的分式域,U’是A’上相伴于对称Cartan矩阵的量子代数,U是U’的由EiN,FiN,Ki,Ki-1(i=1,…,n,N≥0)生成的A子代数.U’具有Hopf代数结构,U有继承的A-Hopf结构.在[1]中构造了量子代数U的量子坐标代数A[U],A[U]是非交换、非余交换A-Hopf代数.本文对秩1的量子
生物活性炭滤池存在充足的溶解氧和生物膜,利于无脊椎动物的生长;然而如果无脊椎动物存在饮用水中,会对饮用水的安全性造成影响。本论文研究了生物活性炭滤池中无脊椎动物群落的周年演替规律,提出了控制无脊椎动物的应对措施。(1)选取南方两臭氧-生物活性炭深度处理水厂(A厂和B厂),取主臭氧后水、炭滤前水、炭滤后水、炭总管,炭样,对水样和炭样中无脊椎动物的种类和密度进行周年调查分析。共发现轮虫28种,甲壳类8
复合材料因为其优越的特性而被广泛地应用。复合材料层合板壳在航空、航天、石油化工、压力容器、土木建筑等工程中已成为重要的结构元件。因此,复合材料层合板壳的非线性问题的研究有重要的理论和现实意义。在建筑和精密仪器等工程中,常使用具有硬中心的边缘固定的开顶扁球壳。这种壳体在中心集中载荷作用时,在一定条件下会丧失稳定性。对于建筑工程,需要防止这种现象发生;对于精密仪器,则应利用失稳所产生的跳跃作为自动控制
本文分为两部分,第一部分为多车道交通流控制问题与求解算法,第二部分结合高速公路路面破坏问题和收益问题建立了一个新的交通流控制模型与求解算法.在第一部分,首先分析了单车道的交通流模型,交通流量的大小与高速公路的平均车流速度和平均车流密度有关,同时亦分析了交通流量与平均车流速度的关系、交通流量与平均车流密度的关系以及平均车流速度与平均车流密度之间的关系.其次,在双车道的交通流模型中,车辆的换道行为可有