【摘 要】
:
驱动桥作为卡车底盘的关键总成,不仅承受车身以及路面施加的载荷,还需要为传动系统提供良好的工作环境。通常期望驱动桥壳在多个极限工况下的变形量不宜过大,保证工作中具有足够的刚度、强度。本文以某微卡驱动桥为研究对象,分析驱动桥在极限工况下的力学特性,分别采用拓扑优化、构建近似模型的方法对主减速器壳体、驱动桥壳进行多目标优化设计。建立了驱动桥壳与主减速器壳体的有限元模型,并在最大垂向力、最大驱动力、紧急制
论文部分内容阅读
驱动桥作为卡车底盘的关键总成,不仅承受车身以及路面施加的载荷,还需要为传动系统提供良好的工作环境。通常期望驱动桥壳在多个极限工况下的变形量不宜过大,保证工作中具有足够的刚度、强度。本文以某微卡驱动桥为研究对象,分析驱动桥在极限工况下的力学特性,分别采用拓扑优化、构建近似模型的方法对主减速器壳体、驱动桥壳进行多目标优化设计。建立了驱动桥壳与主减速器壳体的有限元模型,并在最大垂向力、最大驱动力、紧急制动、最大侧向力四个极限工况以及传动工况下分析了其力学特性。对比分析仿真结果发现,在极限工况下传动系统产生的内部载荷对驱动桥壳的变形量和应力等力学性能指标具有较大影响,最高达到51%,不应忽略。此外,主减速器壳体所受应力远小于材料的屈服强度,具有一定的轻量化潜力。而在最大垂向力工况下的驱动桥壳变形量有待减小,需要对结构进行改进,以提升结构刚度性能。考虑主减速器壳体为铸造件,且具有轻量化设计的空间,在保证不影响主、从动齿轮啮合的前提下,利用拓扑优化方案对主减速器壳体进行了轻量化设计。首先通过评价函数法得到关于静态刚度和动态低阶频率的综合评价函数,约束轴承座B-CD相对变形量及主减速器壳体体积分数,利用拓扑优化结果对原始主减速器壳体进行了结构改进,在刚度和模态性能不变的同时实现11.7%的减重。随后,将轻量化设计结果作为基结构,在不发生运动干涉的前提下,铺设材料作为拓扑优化的设计空间,以降低轴承座B-CD相对变形量为目标函数,约束体积分数,对铺设材料进行拓扑优化设计,使得轴承座相对变形量减少了5.6%,利于主、从动齿轮的正确啮合。考虑到桥壳的加工方式为冲压焊接,无法随意修改表面形状。选取驱动桥壳内径、关键截面的垂向高度为设计变量,以驱动桥壳轻量化及降低轴承座B-CD相对变形量为目标函数,约束桥壳刚度,通过试验设计、构建移动最小二乘法近似模型和全局响应面法对驱动桥壳进行多目标参数优化设计并对最终优化方案进行工程修正。对比优化前后的结果可知,在驱动桥壳质量仅增加2.3%的情况下,B-CD相对位移量下降9.5%,桥壳刚度最大提升10.5%,优化效果良好。
其他文献
镁空气电池具有能量密度高(3910 Wh/kg)、理论电压高(3.09 V)、理论比容量大(2205 m Ah/g)、成本低、重量轻、环境友好和镁储量丰富等众多优点,表现出巨大应用潜力。在其阴极,氧还原催化剂提供着关键的催化作用,承担着加快阳极材料在电解液中与氧气反应的任务。因此,阴极氧还原催化剂的性能直接影响整个电化学体系的性能(能量效率、速率、寿命和成本等),其对于镁空气电池的最终性能表现起着
在人类发展生存过程中,水资源污染问题越来越严峻,与此同时,耗费大量能源追求高速发展所带来的弊端也日益凸显。工业废水是水污染的主要来源之一,其中纺织印染和皮革塑料上色等类型的生产活动,产生了大量亟待净化的染料废水。在众多净水技术中,利用光催化技术降解化学稳定的染料有机物可以将其完全分解为CO2、H2O等无毒无污染的无机物质,而不会留下有害残留物,是解决能源和水污染问题的可用之道。因此构建稳定高效的半
复杂网络可以对现实生活中的各种系统进行抽象化,其中最重要的特性就是社区结构,其应用非常广泛,如社交网络中有共同兴趣的用户往往形成同一社区。如何在网络结构中更精准地识别出社区结构,从而有助于我们更深入地把握复杂系统的内部规律,对网络的拓扑结构形成更全面深刻的认识变得越来越重要。但由于社区挖掘过程中存在的计算复杂度大,社区之间具有重叠性,难以收集整个网络数据等问题,导致社区发现的质量不佳。因此如何设计
近年来,微型电子机械系统(MEMS)快速发展,其在光学、生物、汽车、计算机、航空航天、军事等领域已经得到广泛的应用。微型燃烧器作为其中最重要的动力设备,因体积小、面容比大等问题导致燃料燃烧的高效性和稳定性依然不足,围绕高效稳定微燃烧器的开发和应用已成为当前的热点问题。使用碳氢燃料以及催化燃烧的方式是提高燃烧高效性和稳定性的两种有效方式。因为碳氢燃料具有能量密度高,方便补充燃料,能够多次使用等优势,
菌藻共生体系处理污水,能同时去除有机物和营养盐,无需外界曝气和添加化学药剂,具有占地面积小、能耗低和无二次污染等优点,具有良好的应用前景。水动力条件是影响水处理的关键性因素,目前关于紊流强度对菌藻体系处理污水的影响、尤其是紊流强度和光照时间耦合作用下的影响研究极少,其影响机制尚不清楚,需要对紊流强度和光照时间两种因素的作用开展进一步的研究。为此,本文在密闭反应器中构建小球藻-活性污泥共生体系,采用
与陆上风电相比,海上风电具有资源丰富、利用率高、节约土地等诸多优势,近年来已成为世界各国风电发展的重要方向。基于模块化多电平换流器的柔性直流输电技术因其具有可扩展性好、输电距离远与送受端解耦等优点,迅速发展为海上风电直流并网工程的首选方案。由于海底环境恶劣复杂,导致海底电缆易发生各种类型的故障,从而对系统的安全可靠运行造成严重威胁。因此,分析不同直流故障下海上风电模块化多电平换流器型高压直流(mo
沸腾氯化因其具备高效、环保等特点被公认为世界先进氯化技术,该项技术一直被国外少数几家公司所垄断。我国是钛资源大国,但沸腾氯化生产工艺占比极少,且生产技术大多由国外引进,到目前为止,国内对沸腾氯化的系统研究尚不成熟,对加碳氯化的反应机理研究还有较大的空缺。本文以TiO2为研究对象,对TiO2加碳氯化反应进行了热力学计算,以气速、温度、配碳比、粒度构成等因素设计正交实验,通过对氯化反应过程的重量检测和
随着机械产品装配精度的逐渐提高,零部件装配也由小批量向大批量发展,传统的装配工艺已经无法满足高精度、大批量的现代化装配要求。因此,建立装配优化模型,借助优化算法求解最优装配组合成为当代装配工艺的主流。本文针对某航空活塞发动机曲轴装配相关问题,展开相应研究,主要研究内容及成果如下:在活塞发动机曲轴装配过程中,采用修配法调节曲轴轴向间隙,修配件需反复打磨、拆卸和重装,装配合格率较低,劳动强度大,装配效
近些年来四足机器人的高速运动研究都是基于仿生Gallop步态展开的。然而在Gallop步态下,传统刚性四足机器人存在减缓地面冲击效果差,适应运动环境能力低的问题。仿生学研究中发现,自然界中四足哺乳动物的腿部骨骼肌组成的柔性系统具有减缓冲击,主动调节刚度适应环境的能力。因此,本文研究了腿部刚度与Gallop步态稳定性的关系,并针对稳定性对腿部刚度主动调整的需求,设计了一款结构紧凑、扭矩线性输出可变刚
氧还原(ORR)电极是燃料电池和金属-空气电池等电化学装置的阴极电极,因其动力学过程较阳极的氢电极或金属电极慢六到十个数量级,成为了制约这些类电化学装置能量转化效率的关键。目前,铂基催化剂为最有效的ORR催化剂,但地球储量低、成本高等问题,极大的限制了其在电化学能量转换装置中的大规模使用。因此,要提升氧还原反应动力学速率,还需深入理解氧还原反应机理,发展高效低成本的氧还原催化剂。碳基催化剂如氮掺杂