【摘 要】
:
随着物联网和5G时代的到来,移动终端向着超薄化和多功能化的方向发展。因此,对天线性能的要求越来越高,但是留给天线的设计空间却极其有限。传统天线不仅占用了大量空间,还影响着人们的视觉感受,且不易与设备集成。光透明天线凭借其灵活、透明、良好的隐蔽和共形等特性克服了这些影响,适用于各种形状和大小的设备,引起了人们的广泛关注。本文围绕光透明天线展开研究,主要工作可概括如下:1.设计了一种小型化宽带光透明微
论文部分内容阅读
随着物联网和5G时代的到来,移动终端向着超薄化和多功能化的方向发展。因此,对天线性能的要求越来越高,但是留给天线的设计空间却极其有限。传统天线不仅占用了大量空间,还影响着人们的视觉感受,且不易与设备集成。光透明天线凭借其灵活、透明、良好的隐蔽和共形等特性克服了这些影响,适用于各种形状和大小的设备,引起了人们的广泛关注。本文围绕光透明天线展开研究,主要工作可概括如下:1.设计了一种小型化宽带光透明微带天线。共面波导馈电的单极子天线实现宽带性能,在辐射贴片上刻蚀一个倒T形开路缝隙和两个勺形开路缝隙实现小型化。测量结果表明,天线的中心频率为1.68 GHz,-10 d B相对阻抗带宽为23%(1.45 GHz-1.97 GHz)。透光率为80.6%,在整个工作频段内具有稳定的辐射方向图。2.设计了一种多频带光透明微带天线。选用环形单极子天线实现中频段,在天线上加载负介电常数传输线单元和矩形环分别实现低频段和高频段。在天线下方放置一个反射器,用来提高低频段的增益。测量结果表明,天线的中心频率为2.76、3.88和4.95 GHz。三个频段内的-10 d B相对阻抗带宽分别为18.77%(2.51 GHz-3.03GHz)、17.52%(3.54 GHz-4.22 GHz)和4.33%(4.74 GHz-4.95 GHz)和峰值增益分别为4.57、4.84和2.3 d Bi。透光率为80.7%,在三个工作频段内具有稳定的辐射方向图。
其他文献
热激活延迟荧光(TADF)材料作为有机发光二极管(OLED)的新一代纯有机发光材料,具有小的单(S1)-三线态(T1)能级差(ΔEST<0.3e V),可以使占75%的三线态激子通过反系间穿越至单线态进行延迟发光,其内量子效率理论上可达100%,近年来引起国内外科研和产业等领域的广泛关注。然而,高效的TADF分子需要兼具小的ΔEST和大的单线态辐射跃迁速率,这两者理论上又是相互矛盾的。所以,近期人
电磁吸收器的出现满足了人们对电磁波研究利用的需求,它能对电磁波产生吸收的效果。太阳能吸收器是电磁吸收器的一种,也是热光伏发电器件中的一个重要组成部分,但是目前的可见光至近红外波段的吸收器存在吸收带宽较窄、加工方式复杂、对入射角度敏感以及难以应用到高温领域等问题。基于以上问题,本文开展了如下工作:本文首先介绍了表面等离子体共振效应、磁激元共振和电介质腔共振效应的基本概念,然后介绍了电磁吸收器不同的结
微带反射阵列天线作为一种常用的高增益天线,在现代通信系统中具有十分重要的作用。它由传统的抛物面天线和阵列天线结合而来并且具有这两种天线的优点,如低剖面、重量轻、体积小、低成本、高定向性、结构简单、设计难度低等。正是由于这些优点,微带反射阵列天线被广泛应用于许多领域,并日益受到人们的重视。微带反射阵列天线由馈源天线和平面反射阵列组成,由于馈源天线到反射面上各单元的空间相位延迟不同,故需通过调整单元的
随着半导体工艺尺寸的不断缩小,传统的集成电路互连线方式带来的延迟、能耗等问题逐渐成为制约半导体技术进一步发展的瓶颈。为解决该问题,人们提出多种方案,其中,三维集成电路利用硅通孔(Through-Silicon-Via,TSV)实现上下层芯片间垂直互连,具有尺寸小、功耗低、互连密度大以及可实现异构集成等优势,是最具前景的技术方案之一。实际应用中,TSV加工工艺复杂精细,会因材料热膨胀系数不同、工艺不
超材料(Metamaterial,MM)是一种特殊设计的人工复合电磁材料,具有自然界常规材料所没有的电磁特性。超材料吸收器作为超材料的分支之一,可广泛应用于电磁隐身、折射率传感、热成像等领域。超材料吸收器被提出以来,已经从最初的单频吸收器发展到多频乃至宽频吸收器,工作频段也涵盖了微波、太赫兹(Terahertz,THz)、红外和可见光波段。可调谐超材料吸收器的频段和幅度可以被外部激励条件所调控,能
压缩态光场作为量子光学中一种重要的非经典光场,于1985年通过实验制备首次获得。由于其具有能够突破量子噪声极限、压缩量子噪声的特性,在精密测量中扮演了关键的角色。最近压缩态光场被用于引力波探测,LIGO实验小组将真空压缩光注入引力波探测器的暗端口,极大地提高了其灵敏度。灵敏度的高低依赖于注入压缩光的压缩度大小。压缩度改善的主要限制因素包括损耗和位相抖动,同时为了将高压缩度的压缩光应用到实际精密测量
超材料是自然界不存在的、人工合成的、具有特殊电磁特性的新型材料。超材料吸收器是超材料研究领域的一个重要分支。本文利用新型二维材料石墨烯代替传统的贵金属进行超材料吸收器的设计与吸收性能的研究。所有的数值计算都利用电磁仿真软件CST MWS进行频域仿真,同时结合阻抗匹配理论和多重反射干涉理论进行对比研究。基于石墨烯材料的特殊性质和超材料吸收器在THz频段的实际应用需求,本文针对如下内容展开研究:(1)
随着激光技术和光电子技术的兴起和发展,声光调制器已经成为了多个领域的重要器件。在量子通信这一新兴领域中,声光调制器通常可以实现光开关、时序控制、特殊光开关、纠缠光子反馈采集响应器等功能。声光衍射效率和对任意偏振光偏振保持的能力是声光调制器的两个重要性能指标,并且都会对量子光学的实验结果有着不可忽视的影响。本文从了解声光效应开始对声光调制器进行研究。首先介绍了声光调制器的结构和工作原理,分析了声光调
随着教师群体对核心素养理念的积极践行,数学课堂发生了非常大的变化,广大教师逐渐舍弃过去立足课程知识的落后教学习惯去设计与实施课堂教学。而且,教师开始立足初中生的身心水平、主体能力、认知需求与发展方向去考量、设计与开展数学教学,力求提升数学教学与初中生之间的针对性、主体性与实效性。教师是数学课堂的规划者、构建者与完善者,因而教师以核心素养理念为科学指导,积极构建高效化数学课堂,对初中生的全面发
石墨烯是一种由碳原子紧密排列成苯环形状而形成的单层结构。随着学者们对这一物质的研究不断加深,其独特的光学及电磁特性引发了很多领域内研究人员的关注。研究表明,在特定条件下,石墨烯具有类金属特性,可作为一种支持表面等离子激元的二维结构材料;利用这一特点,在介质波导表面涂覆石墨烯,可构成传输特性良好的表面等离子波导;而且,相较于传统的基于贵金属的表面等离子波导,基于石墨烯的表面等离子波导(GSPs)可调