论文部分内容阅读
光力学系统(Optomechanical system,OMS)描述的是可移动镜子和腔场通过辐射压互相耦合形成的系统。目前光力学系统被发现有许多潜在的运用,例如振子与腔场的纠缠、力学振子制冷、宏观量子叠加态、光力学诱导透明(Optomechanically induced transparency,OMIT)和压缩特性等。本文主要研究的系统是二次耦合光力学系统。我们提出了用参量驱动力学振子调控单个二次耦合光力学腔的OMIT,以及讨论了在共同环境中二次耦合光力学腔的OMIT性质,并研究有限带宽的压缩场光场在二次耦合光力学腔中传播特性。本文具体研究如下:1、首先,本文提出用参量驱动作用到纳米振子,进而调控二次耦合光力学系统的探测光吸收性质。研究发现通过调谐参量驱动,双声子OMIT会增强以及将会出现完全透明。同时,在透明增强过程中,探测场的透明位置不会发生改变。这就克服了一般情况下,二次耦合光力学系统透明位置发生频移的问题。另外,参量驱动增大时,探测光可以被放大。这提供了基于光力学系统平台来实现力学参量放大的光学证据。在放大区域,通过增强力学参量驱动的振幅和减小耦合光场的功率,可实现光放大的增强。这些研究将有助于二次光力学系统的量子压缩或制造低功率高增益放大器。2、然后,本文还考虑有限带宽压缩光场在二次耦合光力学系统中的诱导透明。研究表明,当增加耦合光场的功率时,压缩光场的OMIT窗口将会变得更深和更宽,并且透明位置将会向高频端移动。另外,我们发现通过提升压缩参量,腔内光子数将会增加从而改善了OMIT。除此之外,我们还发现压缩光场的带宽和环境温度也将明显改善二次耦合光力学系统的OMIT。该发现将有助于振动薄膜的制冷。3、最后,本文探究在共同热浴中,双腔二次耦合光力学系统中探测光的诱导透明。我们发现探测光透明性能将随着作用到左腔的耦合光场(左耦合光场)的增强而得到改善,但是透明位置将随着左耦合场的增强而移向高频部分。然而作用到右耦合腔的耦合光场,将使透明位置移向低频部分,因此,通过调节左右耦合光场的功率可固定透射位置。我们通过解析分析出其透明位置由左右耦合光场的强度差决定。另外,我们还发现当把左右耦合的光学腔放在同一个热浴中时,由于共同热浴中产生的交叉衰变项将明显地改善透明程度和拓宽透明窗口。最后,我们还发现环境温度将改善透明性能。这将有助于振动薄膜的制冷,输出光场的压缩和纠缠的研究。