论文部分内容阅读
目前,铅酸蓄电池作为应用最广泛的二次电池,至今已有160多年的历史,但由于较短的循环寿命限制了它在储能领域的大规模应用。自2004年铅碳电池技术的出现,为铅酸蓄电池的技术发展和市场应用提供了新的机遇。先进的铅碳电池已达到4000次以上的循环寿命(60%DOD,Depth of Discharge),在电力储能等领域已得到了初步的应用。通过解决限制铅碳电池寿命的正极板栅腐蚀问题,从而获得超长寿命的铅碳电池(循环寿命≥6000次),具有十分重要的理论研究价值和市场开发价值。本文研究了板栅合金成分、板栅/活性物质界面腐蚀层和正极板栅腐蚀环境,优化了正极板栅合金的成分和正极极板的制备工艺,创新性的提出了通过控制铅碳电池正极电势来降低板栅电化学腐蚀速率的方法。通过对Pb-Ca-Sn-Al四元合金成分的优化和添加剂的引入,研究了合金成分对其金相结构及电化学腐蚀等行为的影响。研究表明,将合金中的锡含量提高至1.5wt.%以上,可以明显提升合金的耐腐蚀特性。在高锡合金中分别引入Bi、Ba、Sr、Ge、Se、Ag、Yb、La、Sm 9种添加剂,发现Bi、Ba、Ge可以促进合金的晶粒生长,Ag、Yb、La、Sm可以使合金的晶粒细化并分布均匀,而Bi、Ba、Ag、La、Sm可以有效抑制腐蚀层中Pb(II)和Pb O2的生长和聚集,腐蚀层均匀致密、具有较好的导电性。进一步通过Bi、Ag、La的复合合金配制,发现含La合金板栅腐蚀较严重,腐蚀层疏松开裂,板栅的蠕变伸长明显。而含Ag合金板栅腐蚀失重及腐蚀层厚度明显下降,致密的腐蚀层对板栅基体起到较好的保护作用,板栅的蠕变伸长量小于1%。由此得出Pb-Ca-Sn-Al-Ag合金适用于长寿命铅碳电池正极板栅。对铅膏包覆板栅和裸板栅的电化学腐蚀行为进行研究。研究表明,随着极化时间的增加和极化温度的升高,均会促进界面腐蚀层的生长,铅膏的包覆使得板栅的电化学腐蚀得到了较好的抑制,腐蚀层的生长开裂现象明显改善,因此采用双面涂板技术,可以有效地缓解板栅裸露引起的部分区域腐蚀较严重的问题。研究了两种合金在铅碳电池中的应用效果,Pb-Ca-Sn-Al-La合金可以有效地提升电池的深循环性能,但板栅严重的腐蚀、蠕变导致电池浮充寿命较短;Pb-Ca-Sn-Al-Ag合金板栅/活性物质界面腐蚀层生成较困难,界面层阻抗较高导致电池过早失效。通过板栅预处理、改进固化工艺及正极添加剂的方法对界面进行改善研究,得出多段式极板高温固化工艺,有效地提高了板栅/活性物质间的结合力,有利于提高界面腐蚀层的导电性。改进后的铅碳电池经过400次100%DOD循环后,容量保持率为98%,展现了优异的循环性能。从板栅电化学腐蚀动力学角度研究了降低板栅腐蚀速率的方法,分析了铅碳电池正极工作电势的变化规律。研究表明,在铅碳电池充电过程中,正极电势随着电池荷电态的升高而升高,当电池达到约90%荷电态时,正极电势达到最大值。正极电势随着电池循环充放电次数的增加而升高,随着电势的升高,正极板栅合金的腐蚀速率增加,电势高于1.2 V后,其增长速率明显增加。从铅碳电池设计和使用的角度,研究了负极碳材料、正极添加剂、电解液浓度和均充电电压对正极电势的影响。研究表明,负极中引入的0.2 wt.%活性碳,降低了负极的析氢过电势和电化学极化,使得新电池的正极充电电势升高约41 m V,但可以有效抑制循环过程中正极电势的升高速率;向正极配方中添加0.1 wt.%Sb2O3和,可以提高正极的α-Pb O2含量,降低正极的欧姆极化和电化学极化,减缓正极电势的升高;正极电势随电解液浓度的升高而升高,通过合理的降低铅碳电池的电解液浓度和减少电池失水,可以有效降低正极电势;研究发现,降低铅碳电池的均充电电压50 m V,电池经过1600次循环测试,对电池的容量保持能力没有明显影响,可以减少正极的过充电量和副反应,明显减缓了正极板栅腐蚀和铅膏软化,有利于延长铅碳电池的寿命。