论文部分内容阅读
数据挖掘是指从大量的数据中自动地提取出有价值的知识和信息。数据挖掘已成为数据库技术和机器学习方面的重要的研究课题。当前,World Wide Web正向应用的深度和广度方面迅速发展。将数据挖掘的思想和方法应用到Web上,解决WWW中遇到的一些问题,从而形成了Web数据挖掘(Web mining)这样一个新的研究方向。Web数据挖掘是指针对包括Web页面内容、页面之间的结构、用户访问信息、电子商务信息在内的各种Web数据,应用传统数据挖掘方法以发现有用的知识,帮助人们从WWW中提取知识,改进站点设计,更好地开展电子商务。电子商务是指个人或企业通过Internet网络,采用数字化电子方式进行商务数据交换和开展广告、推销、购买商品或服务等商务活动。相对于传统商务活动,电子商务具有不受地域限制、节省成本等众多优点本文对Web数据挖掘在电子商务中的应用进行了研究,主要做了以下工作:1.总结了数据挖掘研究现状及最新进展。提出了数据挖掘逻辑模型及存在的一些问题。2.描述了Web数据挖掘技术,Web数据挖掘的过程、数据源及用途。3.讨论了在电子商务中如何有效地利用几种可行的数据挖掘技术,如、关联规则分析、序列模式分析、分类分析和聚类分析等挖掘出用户的购买模式及浏览模式,并就其中的路径分析和序列模式分析提出了实现的方法。4.论述了Web访问信息挖掘的一般过程,将传统数据挖掘过程中的各种关键技术,如数据预处理,聚类算法,关联规则、序列模式发现等引入到对于Web信息的挖掘活动中,并通过一系列的实验进行验证及评价,在以上工作的基础上,设计并实现了一个Web数据挖掘原型系统(EWMiner)。web数据挖掘在电子商务里表现为在大型数据库里面搜索有价值的商业信息。数据仓库、数据挖掘技术和Internet/intranet的完美结合,使其在21世纪的电子商务中有广泛的应用前景。