【摘 要】
:
在工作任务日益复杂,工作精度要求日益提高的情况下,单个机械臂已经不能满足部分工作任务的要求,多机械臂系统的同步与协同控制吸引了越来越多专家学者的研究。而机械臂通常存在参数的摄动并且易受外界环境因素的干扰,如机械臂关节的非线性摩擦,末端执行器操作对象的多样性等,是一种典型的多输入、多输出、强耦合的复杂非线性系统,并且往往难以获得其所有的结构和动力学参数。在这种情况下,传统的控制方法往往难以满足控制精
【基金项目】
:
国家自然科学基金面上项目(61473312):“海洋钻井平台分布式任务空间协同控制策略研究”;
论文部分内容阅读
在工作任务日益复杂,工作精度要求日益提高的情况下,单个机械臂已经不能满足部分工作任务的要求,多机械臂系统的同步与协同控制吸引了越来越多专家学者的研究。而机械臂通常存在参数的摄动并且易受外界环境因素的干扰,如机械臂关节的非线性摩擦,末端执行器操作对象的多样性等,是一种典型的多输入、多输出、强耦合的复杂非线性系统,并且往往难以获得其所有的结构和动力学参数。在这种情况下,传统的控制方法往往难以满足控制精度要求。由于在工程应用中,大多数操作任务都是在任务空间中进行规划的,因此直接在任务空间中设计同步控制器更有利于控制任务的实施。本文首先在机械臂关节空间动力学模型的基础上建立了多机械臂系统任务空间中的动力学模型,并基于图论思想建立了多机械臂之间的通信拓扑,定义了每个子机械臂系统之间的同步误差。在此基础上,基于RBF神经网络设计了多机械臂任务空间的自适应同步控制器,应用自适应律对RBF神经网络权值进行在线更新,并通过李雅普诺夫稳定性分析和仿真验证了所设计控制器的有效性。针对存在不确定性的多机械臂系统,首先分析了系统模型不确定性,并设计了相应的滑模同步控制器,然后在此基础上对模型不确定性采用RBF神经网络进行了逼近和补偿,设计了基于RBF神经网络的任务空间滑模同步控制器。针对模型未知的多机械臂系统,利用多个独立的RBF神经网络,对每个子机械臂系统进行逼近,结合滑模控制方法设计出一种无模型的自适应同步控制器,通过神经网络权值的不断在线迭代过程,可以实现对其动力学模型随机械臂工作任务的变化的实时逼近,摆脱了数学模型的限制,扩大了控制器的应用范围。最后,对权值迭代过程进行了优化,采用单个参数代替神经网络权值,设计了基于最小参数学习法的RBF神经网络同步控制器,更好地满足了实时控制的要求。
其他文献
大数据时代的到来以及深度学习的兴起使得图像描述成为了人工智能热门研究方向。传统的方法虽然在某种程度上能够完成基本的描述任务,但是在准确度丰富度上还存在一些不足。此外,它们只是利用了单一的图像属性或者图像的视觉特征,对于它们之间的关联性以及不同模态特征之间的互补性并没有进行详细的研究。为此,本文提出了两种图像描述的改进方法。一是基于视觉注意力与用户注意力社交图像描述方法。该方法意在利用社交图像中用户
本文着重研究了基于递归神经网络模型的共轭梯度法与广义Armijo搜索技术相结合的算法:第一章简要介绍了共轭梯度法的发展现状、神经网络的相关背景知识,并且总结了基于递归神经网络模型的算法研究现状.第二章基于Elman模型,结合广义Armijo搜索技术,设计了一种新的共轭梯度算法.该算法修正了RMFI共轭梯度算法,更新了共轭参数,使得新算法每次都能产生一个充分下降的搜索方向.此外,本章证明了基于Elm
人工神经网络在信号预测、函数逼近、自动控制以及模式识别等领域都具有广泛的应用,具有万能逼近能力的单隐层前馈神经网络是神经网络研究的重点。基于最速下降法的反向传播算法是训练单隐层前馈神经网络的流行算法之一,但它有收敛速度慢、耗时较长等缺点。基于存储量小和收敛速度快等优点,共轭梯度法目前已经成为训练神经网络的一种有效算法。结合单隐层实值前馈神经网络模型,近年来有研究者提出了基于共轭梯度法的实值神经网络
随着互联网技术的快速发展,每天都会产生海量的文本数据。文本分类作为自然语言处理和网络信息挖掘的基础,在文本信息处理中有着重要地位。人工文本分类方法和传统的机器学习文本分类方法难以满足目前对文本分类效率和精度的要求。随着深度学习在自然语言处理中的应用,深度学习方法为文本分类问题提供了新的解决途径。本文在研究总结文本向量表示技术和深度学习模型卷积神经网络原理的基础上,对运用卷积神经网络模型解决文本分类
目前国内区块链应用推广中,浮夸的商业化气息太重,造成一些不成熟的东西被过度吹捧。只是搞了些超级账本、以太坊、比特币就认为是在做区块链的,不符合习近平总书记的要求。区块链要先有基础设施,再要与产业深度融合,具体到金融、民生、政务等"百业可用",最后还必须达到一个颠覆性的突破。
复值神经网络是一类从实数域扩展到复数域的神经网络。复值超限学习机是其中一种有效的学习算法,它比复值BP神经网络算法收敛速度更快,但是为了达到与复值BP神经网络算法相当的性能需要更多的隐节点。USA算法是介于BP算法和ELM算法之间的一种有效算法,用于训练单隐层实值前馈神经网络,USA算法的性能优于ELM算法和BP算法。受USA算法的启发,结合复值ELM和复值BP算法,根据激活方式不同,本文提出了两
随钻测量(MWD)技术用于钻井过程中井下信息的实时测量与上传。随钻测量系统通常采用钻井液连续压力波进行井下数据向地面的遥传,其关键部件旋转阀的转速控制关系到钻井液压力信号的产生与信号质量,是随钻测量领域急需解决的一个关键问题。本文基于旋转阀结构和转子的受力分析,采用理论计算结合CFD仿真分析建立旋转阀负载力矩的多项式计算模型,为精确描述旋转阀负载力矩随转角的变化规律,负载力矩的计算模型以转阀的开阀
随着全球经济的快速发展,人们对化石能源消费不断增长。由CO_2等温室气体造成的全球气候变化的威胁与日俱增。碳捕集、利用与封存(CCUS)技术作为有效缓解CO_2排放的关键技术引起了学术界和工业界的广泛关注。CCUS技术的经济性一直是影响其在中国乃至世界范围内大规模发展的主要因素。因此,运用科学的方法对CCUS全流程进行优化设计,构建合理的技术实施方案,提高CCUS技术的经济性,为我国减排战略提供科
脑卒中和外界因素等导致下肢康复问题一直以来是医学研究的焦点。康复机器人将机器人技术应用于康复领域,对康复训练起到了很大的促进作用。本文提出一种3自由度的柔索驱动并联康复机器人,进一步拓宽了下肢康复机器人在康复领域的研究应用。主要研究内容如下:根据人体下肢对康复运动的腿部及人体平衡需求,设计了下肢康复训练机器人的整体结构,并对柔索驱动单元进行了详细的结构设计。对柔索驱动下肢康复运动的运动空间进行了详
自动化程度是权衡一个产业现代化程度的重磅砝码,连续搅拌反应釜(Continuous Stirred Tank Reactor,CSTR)是石化行业中最广泛应用的设备,其性能表现与产业效益息息相关,对其控制研究也就具备了一定的研究意义和经济价值。由于CSTR的高复杂性,需要为CSTR设计一个良好的控制算法。滑模控制属于一类特殊的变结构控制,其特有的滑动模态使被控系统具备了良好的鲁棒性和优秀的动、静特