论文部分内容阅读
本文以863课题航天筒体结构的焊接数值模拟研究为背景,采用数值模拟与实验相结合的研究路线,开展了焊接数值模拟精确建模研究以及高效计算研究,并对实际生产中应用的航天筒体结构焊接变形进行了实验测量与数值模拟。在数值模拟基础上进行了航天筒体结构焊接工艺优化,提出了减小航天筒体结构焊后沿母线下凹变形的工艺措施,并得到了实验结果的正确验证。焊接数值模拟精确建模研究包括精确材料模型的建立,以及夹具拘束作用模型的建立。通过热力学模拟实验,系统研究了焊接热循环温度历史对两种有代表性的铝合金材料屈服强度的影响,建立了材料性能依赖于温度及温度历史的材料模型,提高了焊接数值模拟的计算精度。在夹具拘束作用模型中,将夹具和垫板作为弹塑性体包含在焊接数值模拟几何模型中,并将其与被焊试样之间的相互作用定义为接触对,分析了夹具及垫板与被焊试样之间相互作用的不同处理方式对被焊试样焊接应力与变形的影响。利用移动温度函数法以及解析法与有限元法相结合的方法,分别开展了焊接数值模拟高效计算研究。利用移动温度函数法,将大型筒体结构焊接数值模拟的计算时间缩短至有限元顺序耦合法的1/3,而且能够保证焊接数值模拟的计算准确性。将解析法与有限元法相结合,在ABAQUS软件中同步完成了焊接温度场与焊接应力应变场计算,与有限元顺序耦合法相比,在保证计算准确性的前提下,将焊接数值模拟总计算时间和总CPU时间均节约40%以上。采用数值模拟与实验相结合的研究方法,进行了航天筒体结构焊接变形研究。开展了不同尺寸与结构形式航天筒体结构的焊后残余变形预测,焊接验证实验证明了数值模拟预测结果的准确性。采用数值模拟与实验研究相结合的分析方法,发现航天筒体结构焊后沿母线的下凹挠曲变形主要由焊缝的横向收缩引起。针对焊缝横向收缩的特点,开展了基于数值模拟的航天筒体结构焊接工艺优化,提出了减小筒体结构焊后沿母线下凹变形的工艺方案,并得到了实验结果的正确验证。