【摘 要】
:
目标识别作为图像感知和视觉领域的一项基础任务,其性能的好坏将直接影响后续中高级任务的性能,进而决定着人工智能在特殊场景中的应用。最近几年,随着深度学习的发展,目标识别方法也取得了巨大的突破。但是现有的方法在面对复杂场景中的小目标识别和缺少标注数据的小样本目标识别上依然存在一些困难尚未解决。本文针对现有问题,从两方面进行分析,首先利用深度学习的目标特征感知能力和强化学习的序列搜索能力来解决小目标识别
论文部分内容阅读
目标识别作为图像感知和视觉领域的一项基础任务,其性能的好坏将直接影响后续中高级任务的性能,进而决定着人工智能在特殊场景中的应用。最近几年,随着深度学习的发展,目标识别方法也取得了巨大的突破。但是现有的方法在面对复杂场景中的小目标识别和缺少标注数据的小样本目标识别上依然存在一些困难尚未解决。本文针对现有问题,从两方面进行分析,首先利用深度学习的目标特征感知能力和强化学习的序列搜索能力来解决小目标识别问题;其次,利用元学习的快速适应能力来解决小样本目标识别问题。本文的主要工作和创新点如下:1)针对小目标识别问题,本文提出了一种基于强化学习和上下文信息的小目标识别方法St-CISNet。真实场景中的小目标面临着尺寸小分辨率低的情况,深度卷积网络在处理这些小目标的时候通常难以捕捉到用于类别识别的深层信息,而强化学习的序列搜索能力可以在图像中找到感兴趣的区域,并对挑选出的区域进行再次识别。因此,本文在小目标识别中引入了强化学习,提出了一种融合上下文信息的强化学习小目标快速搜索方法St-CISNet。该方法不同于以往基于强化学习完成目标识别任务的方法。St-CISNet通过模拟人眼,以从整体到局部的搜索方式,结合强化学习的时间上下文搜索机制,将含历史信息的“时间上下文”置于含位置信息的“位置上下文”上,逐渐地缩小搜索范围,以将注意力最终聚焦在小目标上。实验结果表明,St-CISNet有效地提高了小目标的识别性能。2)针对小样本目标识别问题,本文提出了一种基于元强化学习的小样本目标识别方法Meta-St-CISNet。现有的深度学习和强化学习识别方法往往存在样本利用率低,泛化性能差的情况,而元学习的快速适应能力可以在小样本的情况下快速泛化到新任务中。因此,本文将元学习引入到强化学习中,提出了一种新颖的小样本目标识别方法Meta-St-CISNet。该方法首次将元强化学习引入到了目标识别领域,通过双层优化的学习方式实现了少量标注样本下对新任务的快速自适应。具体来说,Meta-St-CISNet为St-CISNet训练了一个敏感性高的初始化参数,该参数使得模型可以使用少量的训练样本快速地泛化至新任务上。此外,Meta-St-CISNet避免了传统小样本目标识别范式中对数据集处理的步骤,有效的简化了识别流程。实验结果表明,Meta-St-CISNet有效地提高了小样本目标识别的性能。
其他文献
疲劳检测是一个非常重要的研究领域,疲劳状态严重影响个体的生产效率和工作安全,如果不能及时识别和处理,可能会导致不良后果。因此,对疲劳状态进行有效的检测和管理非常重要,能确保人们的身体安全,有助于推动社会的进步。由于疲劳状态是一种高度个体化和主观感受强烈的生理状态,这使得建模和分析疲劳状态变得更加困难。本文研究的重点在于使用多模态生理信号(脑电信号、心电信号和肌电信号)来检测操作员在模拟飞行操作环境
随着无人机技术的飞速发展,无人机自组网成为无人机应用中备受关注的研究领域之一。无人机自组网可以解决无人机之间通信障碍的问题,广泛应用于军事和民用领域。然而,无人机节点的能量消耗不均衡以及链路通信稳定性差的问题仍然是制约无人机自组网性能的主要瓶颈,而合适的路由协议是解决上述问题的关键。动态源路由(Dynamic Source Routing,DSR)协议广泛应用于资源受限的自组网,具有较低的路由开销
近年来,基于深度学习的遥感图像目标检测在很多场景和领域中得到了广泛的应用。但在针对海面遥感目标的检测任务时,由于卫星遥感图像数据采集成本高、成像质量不稳定,导致可用于深度学习训练的样本非常少。因此,为了更加容易地获得数量多、质量好、样式可控的海面遥感目标图像,本文提出了基于样式(Style)的海面遥感目标图像生成对抗网络。该方法结合了生成对抗网络(Generative Adversarial Ne
当今社会移动互联网高速发展,网络数据呈指数级增长。然而这些海量数据大多属于无结构异质数据,尽管其蕴含丰富价值,却难以被有效利用。通过实体关系抽取技术,可以有效地提取出无结构文本中的实体与实体之间的关系,并将这些关系以结构化的三元组形式呈现,从而有效地提取出文本中的重要信息,满足人们对无结构数据的需求。这些结构化三元组对知识图谱,推荐系统,自动问答等人工智能领域有着重要的意义与价值。近年来随着深度学
极化码(Polar Codes)是在理论上被证明可达香农极限的信道编码方案,与其他纠错码相比具有编译码复杂度低、构造简单等特点,但传统的译码算法建立数学模型和求解都较为复杂。通信系统中的译码过程可以看作是对信息的分类,而深度学习可以对大量训练数据进行有效处理并从中学习到相关的特征,能够解决很多非线性的复杂建模任务,因此可以将深度学习用于通信系统中的译码过程。有鉴于此,本文对极化码与深度学习相结合的
随着自行火炮功能、结构和集成技术的日益复杂,故障诊断和维修保障的要求也越来越高。同时,自行火炮使用人员的流动性大,需要保障装备的培训学习效果和减少诊断推理对专业技能及经验的依赖,以便使用人员和维修人员能够快速熟悉装备,并在故障发生时准确迅速地应用知识完成故障诊断和故障排除。IETM的应用不仅为复杂装备的故障诊断提供了便利,还能满足装备的维护保障和培训需求。为了提升自行火炮的故障诊断效率和保障能力,
目标跟踪作为计算机视觉领域的一项重要任务,在虚拟现实、智能交通、无人机等领域具有广泛的应用。随着机器学习技术的进一步发展,目标跟踪技术有了很大的改进,然而因为遮挡、背景杂乱和出视野等挑战因素的存在,实现复杂场景下的鲁棒跟踪仍存在一定的局限性。为了提升孪生网络目标跟踪算法的鲁棒性和定位精度,本文从以下两个方面进行研究。(1)针对复杂场景下的目标形变与相似物干扰的问题,在Siam RPN算法的基础上,
互联网技术的飞速发展和新闻平台的多样化,使得人们能便捷地获取、分享信息,同时也产生了“信息过载”。这使人们从海量信息中获取知识的效率受到严重挑战,推荐系统专于应对这一挑战。它是在用户需求不明朗的情况下,通过对用户行为习惯等信息进行综合分析,从而挑选出最合适的内容推送给用户。然而,在新闻场景下,只有部分研究通过深入分析文本内容来确立用户偏好,如DKN算法(Deep Knowledge-aware N
红外弱小目标检测技术在周界安防、目标跟踪、防火防灾等领域具有广泛的应用。红外弱小目标由于其尺寸小、特征不明显且经常受到背景杂波干扰等特点而导致检测难度极大,现有的目标检测方法存在严重的漏检和虚警。针对这些问题,本课题基于深度学习理论开展了红外弱小目标检测方法的研究。主要工作如下:(1)提出了基于孪生Transformer的单帧红外弱小目标检测方法。该方法将原图划分为若干个不重叠的子图,然后将目标子
随着互联网的快速发展和数智化时代的到来,个性化推荐已经被广泛应用在商品、视频、音乐、电影、短视频等各种推荐场景上,并且发挥了至关重要的作用。但如何进一步提升推荐的准确性并带来更高的用户体验感,一直是相关研究的重点。现有的基于深度学习的推荐算法常使用的预估模型是以用户的点击为目标的,这样并无法考虑到用户点击后产生的其他行为,从而缩小兴趣网络降低用户满意度,并且存在样本稀疏、显隐式反馈运用不平衡、目标