论文部分内容阅读
论文以医药企业包装机械中的数粒机为应用背景,采用音圈电机(Voice Coil Motor,VCM)为激振源,完成电磁式振动给料机的改进。传统的振动给料机基本以电磁结构为激振源,在数粒机中用于分散和传输物料。但电磁结构的激振存在受弹簧老化的影响严重、易受环境影响和振幅不能稳定可控等缺点,在送料效果和速度方面的稳定性不够,不利于数粒机快速和稳定工作。而音圈电机具有运动过程精确可控、抗干扰能力强和自动化程度高等特点,以音圈电机替代电磁结构的振动给料机,能精确控制振幅和频率,有利于提高送料速度和稳定性。论文主要工作内容如下:(1)首先介绍了音圈电机伺服系统的研究现状,描述了电磁式振动给料机的工作过程,分析了电磁结构存在的主要问题,选择采用音圈电机位置伺服驱动系统提供稳定可靠的激振,实现对振动给料机进行改进。(2)为了确立音圈电机的数学模型,从工作原理上进行分析,在等效的情况下,得到其模型的传递函数。由于音圈电机驱动振动给料机时需要做快速往复运动,介绍了音圈电机的复杂迟滞特性,说明高频运动下音圈电机呈现出不可忽略的非线性特性,是一个复杂的非线性被控对象,并通过振动给料机的动力学分析,确定音圈电机做高频往复运动时的位置伺服控制要求。(3)为了得到更优的控制效果,对H桥功率变换器进行了分析,并对音圈电机位置伺服驱动系统进行了研究和仿真验证。为进一步提升电流环动态性能,添加两种前馈补偿环节:反电动势扰动的前馈补偿、电流给定的前馈,组成“PI+前馈补偿”的复合控制方式。介绍了自抗扰控制(Active Disturbance Rejection Control,ADRC)方法并应用于位置环,用于适应音圈电机的复杂迟滞特性,同时能够提高位置环的控制精度。文中详细分析了电流环和位置环的控制算法,并列举了其参数设计的过程,最终通过Simulink平台进行了仿真验证。(4)介绍了音圈电机位置伺服驱动系统的硬件平台和软件结构,并对其中的主要部分进行说明。硬件包括功率电路、操作面板和控制电路,软件包括控制算法模块、面板通信模块和坐标旋转数字计算方法(Coordinate Rotation Digital Computer,CORDIC)。(5)以音圈电机位置伺服驱动系统为激振源,搭建了相应的振动给料机实验平台,并成功应用于包装机械的数粒机中。对所设计的音圈电机位置伺服驱动系统进行了带载测试,并通过与经典PID控制进行对比,验证了ADRC的控制性能。控制音圈电机产生高频振动,进行持续的平台送料测试,验证系统的稳定性。