论文部分内容阅读
松香是一种丰富的可再生资源,全球的年产量高达110-150万吨。它刚性的环状结构和一些石油基的芳香族或脂肪族化合物媲美,使得它可以应用于一些高性能聚合物的合成。为利用松香这种可再生资源,合成出新的生物基热固性材料以缓解日益严重的石油危机带来的压力,本文在以下几方面进行了研究:1、以松香酸和马来酸酐为原料,通过D-A反应合成了高纯度的马来海松酸酐,用IR、NMR、元素分析等对其进行了结构表征。在此基础上,分别用马来海松酸酐和偏苯三酸酐对环氧树脂DER 662E进行固化,并用DMA、力学性能测试仪、TGA等对比研究了固化后环氧树脂的模量、玻璃化转变温度、拉伸强度等力学性能和耐热性能。探索了生物基马来海松酸酐作为环氧树脂固化剂替代石油基偏苯三酸酐的可能性。由MPA和TMA作为固化剂固化后所得环氧树脂的模量基本相同,其模量在2500 MPa左右。但是前者具有略高的玻璃化转变温度(具体为127℃和121℃)。其弯曲强度亦没有太大差别,TMA/DER 662E固化产物的弯曲强度为105±1MPa, MPA/DER 662E固化产物的为107±2 MPa。这可能是由于MPA和TMA在固化环氧树脂DER 662E时,具有相同的官能度(都是一个酸酐和一个羧基,官能度为3),但是MPA相对于TMA而言,其庞大的氢菲环结构具有更大的空间位阻效应,从而在一定程度上提高了环氧树脂的玻璃化转变温度。2、以可再生资源松香为原料经D-A加成、酸酐水解、酯化等一系列反应合成了高环氧值的生物基环氧树脂,并以生物基(包括松香基和桐油基)的固化剂固化所合成的环氧树脂,并对固化产物的性能进行了系统的研究,通过调配松香基固化剂(MPA)和桐油基固化剂(TOA)的复合比例可以得到一种综合性能俱佳的生物基热固性材料。虽然MPA固化的松香基环氧树脂与桐油酸酐固化产物在模量和玻璃化转变温度具有明显的优势,但美中不足的是其材料性能在冲击强度上的劣势也很明显,因此有必要加以改善,从而提高其使用范围。我们尝试用不同比例的TOA混合MPA共同固化环氧树脂,以得到一种性能全面优越的材料以满足各方面的应用。单纯等当量的桐油酸酐的固化的松香基环氧树脂其弹性模量仅为900 MPa左右,当其分别混入30%和70%(以环氧当量计算)的马来海松酸酐共同固化环氧树脂时,模量分别增加至1400 MPa和2000 MPa左右,同时单纯的马来海松酸酐固化该生物基的环氧树脂时时,所得固化产物的冲击强度仅为1.84 kJ/m*m,当分别与一定量的桐油酸酐混合后固化所得产物冲击强度提高了75%左右。在当前石油资源越来越紧缺和环保的呼声日渐高涨的时代背景下,我们的目标旨在利用可再生资源合成生物基热固性材料以缓解日益严重的石油危机带来的压力。