高分子修饰的DNA纳米结构研究

来源 :华中科技大学 | 被引量 : 1次 | 上传用户:rgzgjh
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
DNA纳米技术作为一种新兴的纳米材料合成技术,极大地促进了纳米科学与生物材料领域的融合。随着DNA折纸术(DNAorigami)的提出与发展,各种复杂的二维、三维DNA纳米结构已经被制备出来。这些纳米结构的合成表明此技术可以在肉眼不可见的纳米尺度进行非常精确的调控。目前,基于DNA分子的易修饰性、可寻址性和极好的生物相容性,DNA纳米结构已经在材料及生物领域得到了广泛的应用。例如,可以在DNA分子上共价修饰各种疏水性分子来诱导DNA纳米结构的组装;以DNA纳米结构为纳米金和抗癌药物的载体实现光热及化疗的协同作用等。可以说DNA纳米结构具有巨大的优势及潜力可以实现临床应用。然而,DNA分子也有相对的不稳定性,例如生命体系中的DNA酶可以快速降解外来的DNA纳米结构。基于此,我们考虑将正电性的高分子材料和DNA纳米材料结合,利用高分子的修饰对DNA纳米材料进行改性。我们将从稳定性、细胞摄取率等方面对高分子修饰的DNA纳米材料进行研究,为解决DNA纳米结构在生理溶液中稳定性不高、细胞摄取率较低等在生物医学应用中的瓶颈问题提供新的策略,从而有助于进一步推动生物医用DNA纳米材料的发展。
  具体而言,本文将研究DNA折纸结构与蛋白质高分子及其它合成高分子的相互作用,以及高分子修饰后的DNA纳米结构的稳定性、细胞摄取率等。主要包括以下内容:
  (1)首先,我们构建了带正电的蛋白质保护的DNA纳米结构。由于静电吸附作用,当DNA纳米结构与带正电的蛋白质混合,带正电的蛋白质会吸附在DNA折纸结构上形成一层蛋白包裹外壳。蛋白质外壳可以保护DNA纳米结构不被DNA酶降解,并在低盐浓度及酸性条件下具有更高的稳定性。而且,正电荷包裹的DNA折纸结构比未包裹结构具有更高的细胞摄取效率。
  (2)其次,我们利用原子转移自由基聚合(ATRP)反应在DNA纳米结构表面原位修饰高分子。在DNA折纸表面的特定位置上修饰引发剂分子,并原位引发ATRP反应,得到特定形状高分子修饰的DNA纳米结构。在DNA纳米结构表面修饰高密度的高分子层,可以保护DNA结构不被DNA酶降解。同时,在高分子保护的纳米空腔内修饰G-四链体催化中心,催化多巴胺的原位聚合,实现高分子保护的DNA纳米反应器的构建。
  (3)最后,为了可控地构建正电性高分子修饰的DNA纳米结构,提高其进入细胞的效率的同时保留其可修饰、可寻址等功能,我们通过光响应的转换策略实现了正电性高分子在DNA纳米结构上的可控修饰。在DNA折纸片表面预先设计的位置原位引发光响应单体分子的ATRP反应,在特定区域生长出光响应性高分子。在紫外光照下,高分子脱去保护基团暴露出带正电的氨基,形成区域性的带正电的高分子。高度密集的氨基改变了DNA折纸本身的电性,有效地提高其细胞摄取率。
其他文献
该论文对电解制备高Al含量聚合氯化铝(E-PAC)的原理、方法、反应器、生产工艺和工业化制备等方面进行了系统研究,完成了从原理设计到生产实践的全过程.同时,对电解制备PAC的形态表征、Al的生成机理与凝聚絮凝特性等进行深入探讨,为Al絮凝剂电解制备的研究与应用奠定了科学基础.根据铝的电化学水解聚合及Al生成的电化学条件,发明了E-PAC的连续式电解制备系统,实现了进出料的动态平衡和聚合絮凝剂的连续
论文分别对Al形态的分离提纯方法、形态稳定性以及凝聚絮凝作用特征等问题进行了较为系统的阐述.在实验过程中,采用Al-Ferron逐时络合比色法详细研究了不同碱化度B的聚合氯化铝(PACl)与硫酸根反应的动力学长期特征,并结合多种先进的仪器检测手段,对PACl中各种不同形态反应生成的结晶体的形貌进行研究,对影响反应的主要因素比较分析之后,确定了分离的最佳操作条件.进一步考察了Ba/SO比、超声反应时
肝硬化(LiverCirrhosis)是一种常见的慢性肝脏疾病,往往由于引起并发症而导致死亡。病理医生将肝肉芽肿归为由结核杆菌引起的肝胆位置的病变,并可导致原发性胆汁性肝硬化,此外,肝部环状肉芽肿与多种肝炎,肝部其他疾病关系密切。目前临床上主要通过病变组织的病理显微图像来研究和诊断肝肉芽肿及肝硬化疾病。但是,因为肝硬化病变种类多样,肝肉芽肿的形态及其周围组织的情况复杂,所以增加了病理科医生的工作难
激光散斑衬比成像(Laserspecklecontrastimaging,LSCI)广泛应用于脑、皮肤、视网膜、关节病和及肠系膜等生物组织的二维血流变化和药物效率评估中。同时,LSCI已成为研究生物组织血流功能反应和病理机制的重要研究工具,相较于其他技术,激光散斑衬比成像具有快速成像、高时空分辨率、无需扫描就能实现大范围二维流速监测,为研究组织功能活动提供重要工具、阐明疾病机制等优势,对于血液动力
学位
肝癌是我国死亡率仅次于胃癌、肺癌的第三大恶性肿瘤,而且其发病率在逐年增加。肝癌隐匿性强、早期症状不明显且预后效果较差,早期诊断和治疗是目前降低其死亡率最有效的措施。肝脏病理图像是诊断肝癌的金标准,通过肝脏病理图像对病人进行诊断需要依靠临床医生丰富的经验,而在面对大量的病理图像诊断时,医生很容易由于疲劳和经验不足而出现误诊或漏诊。因此本文尝试通过计算机图像识别技术来辅助医生对病人进行诊断,为医生提供
体外受精-胚胎移植技术(invitrofertilizationandembryotransfer,IVF-ET),俗称试管婴儿,发展至今已经为许多不孕不育患者解决了难题。提高胚胎移植的着床成功率是试管婴儿技术的关键。目前对试管婴儿早期胚胎着床潜能的评估主要是对D3天卵裂胚医学图像的形态学分析,通过观察卵裂期胚胎图像中卵裂胚细胞数目、胚胎的碎片程度、卵裂胚是否均匀以及是否含有空泡等。形态学特征的弊
实验目的  本论文致力于构建兼具骨组织细胞电刺激修复功能的过氧化氢和乳酸多功能生物传感器,实现对于骨骼肌疲劳性疾病如骨组织长期劳损、疲劳性骨折等疾病的诊断与治疗一体化。我们首先通过聚合增强边缘功能化球磨法、模板辅助电化学沉淀法等方法制备了具有高电化学活性的聚苯胺化石墨烯(PAG)纳米线阵列。然后在此基础上组装生物电极,实现对于过氧化氢(H2O2)和乳酸等组分的高灵敏度检测,并能通过电极的应用与电场
学位
由于日益增长的能源危机和环境问题,清洁能源技术已经受到越来越多的关注。水裂解和燃料电池被认为是解决这两个问题最有效且环保的方法。当前对于水裂解和燃料电池技术来说,主要的挑战是设计高效且花费低的催化剂来催化析氢反应(HER)和氧气还原反应(ORR)。贵金属Pt或Pt基催化剂已经展现出优秀的析氢和氧气还原催化活性,但是由于其价格昂贵、储量有限,很难应用于大规模的商业生产。而且,在碱性的ORR过程中,贵
学位
分诊是护理人员或导诊人员根据患者的主诉及主要的临床症状和体征,按照患者疾病的轻重缓急进行初步诊断、分配专科及安排就诊顺序的过程。随着农村合作医疗及城镇医疗保险的普及,医院就诊人数逐年明显增加,因此准确分诊显得尤为重要。大型综合医院专业及科室设置十分细化,而患者医疗知识缺乏,就诊前不知道挂哪个科室号,有的挂错号后重新排队挂号,浪费时间、财力和精力的同时,甚至延误救治时间,易引起医疗纠纷。  据201
学位
由于对人类DNA结构变化的理解有所提高,人们怀疑所有人类99.9%的遗传同一性。在过去的近十年中,基因拷贝数变异范围极为广泛,还有很多未知领域。现有的遗传变异信息主要来源于多个数据库,单一的数据库无法也不能完全“描述”基因拷贝数变异,由于研究的方向及应用目的,部分变异甚至在所有的数据库中无法确认。目前只要引用数据库都是国外的数据库,国内自己的数据库资源匮乏,这导致了一些人群不同、地域不同的遗传变异
学位