论文部分内容阅读
人脸识别技术已经广泛地应用于当前社会中,如安保系统、高科技IT产品、个人电脑和智能手机等。这些智能产品已经使当今社会的各项服务更安全、快捷和方便,人脸识别也早已经成为了当前人类活动中不可或缺的技术。在过去的几十年里,已经有各种各样的相关算法被提出来解决人脸识别中的各种问题并取得了重大的进展,在理想条件下这些算法可以使得计算机的人脸识别率超过人眼。然而,对于非限制条件(自然条件)下的人脸识别,当前的人脸识别技术仍然存在着许多挑战。非限制条件的人脸识别需要对真实自然场景中的人脸图像进行特征提取,因此容易受到诸多因素的影响,如面部姿态差异以及由光照、模糊、噪声、低分辨率等因素引起的人脸图像内容丢失。这些因素极大地影响了非限制条件下的人脸识别性能,需要进行进一步的研究。除此之外,随着对认证安全性的不断重视,人脸识别系统不仅需要具有较高的识别精度还需要能鉴别该人脸是真实的人脸还是来自图片或视频中的人脸(伪造攻击人脸)。因此,人脸防伪技术也是当前非限制条件下人脸识别系统中的重要组成部分。为了提高当前人脸识别系统的准确性、鲁棒性、以及安全性,本论文主要集中研究人脸图像增强,人脸关键点检测,人脸姿态归一化,以及人脸防伪特征学习等课题。主要研究贡献如下:1.针对于自然场景中受光照影响的人脸图像,第三章提出了一种基于尺度分解和能量模型最小化的人脸图像去光照方法。该方法首先利用对数全变分对受光照影响的人脸图像进行尺度分解,从而得到只包含人脸本质特征的小尺度成分和主要包含光照特征的大尺度成分。随后,通过最小化全变分能量函数估计出人脸图像中的光照场并将其移除。不同于以往的方法通过提取人脸图像的光照不敏感特征用于人脸识别,该方法首次提出估计光照场的方法来去除光照的影响。论文在CMU-PIE,Extended Yale B和CAS-PEAL-R1这三个主流的人脸光照数据库上进行了充分的实验,实验结果表明,所提出的方法显著地提高了人脸去光照的可视化效果和受光照影响图像的人脸识别率。2.针对于大姿态和受遮挡影响的人脸图像,第四章提出了一种自监督辅助学习的人脸三维关键点检测方法。该方法构建了基于关键点自映射的强监督和基于生成对抗学习的弱监督模型,利用自然场景中无三维标注的二维人脸图像对三维人脸重建进行辅助监督。不同于二维人脸关键点检测算法,该算法能重建出单张二维人脸图像所对应的三维人脸模型,并用来还原密集三维人脸关键点。重建出的密集关键点包含丰富的三维人脸信息,可以对大角度偏转和受遮挡影响的人脸图像进行更精确的对齐。论文在AFLW2000-3D,AFLW-LFPA和Florence这三个主流的三维人脸验证数据集上进行了充分的实验,实验结果表明,所提出的方法在三维人脸重建和三维关键点检测方面均取得了很好的结果。3.第五章提出一种基于生成对抗学习的跨姿态低质量人脸复原方法和过渡训练方法,旨在同时解决人脸图像大姿态偏转和低质量因素(如模糊、噪声、光照影响及低分辨率)影响的问题。给定一张任意角度和任意低质量因素影响的人脸图像,论文提出的任意人脸复原模型首先对该人脸进行三维重建,并在标准的三维空间中自动对其进行姿态归一化,从而得到标准的正脸姿态。得到的正脸姿态将引导高质量人脸还原对抗网络的学习,从而可以从任意给定的人脸图像生成其对应的高质量正脸图像。值得注意的是,所提出的任意人脸复原模型可以端到端一次性从给定的人脸图像中还原其高质量正脸图像,并显著提高人脸图像的识别率。论文在CMU Multi-PIE、LFW和IJB-C这三个数据库上进行了充分的实验,实验结果表明,所提出的方法不论是在人脸转正还是在人脸增强上均取得了很好的结果。4.第六章提出了一种基于深度迁移学习的人脸防伪方法。该方法属于半监督学习,实验结果表明,只需要利用少量目标域的无标签人脸进行半监督训练,所提出方法即可极大的提高人脸防伪的跨域识别率。此外,论文还提出了深度多任务学习的人脸防伪方法,将人脸识别和活体人脸检测算法融合到一个深度学习的网络框架中进行相互增强训练,同时提出全混淆损失函数和快速域迁移算法来提高活体人脸检测的普适性。论文在CASIA-FASD,Replay-Attack,MSU-MFSD,Oulu-NPU和Si W这五个主流的人脸防伪数据集上进行了充分的实验,实验结果表明,该方法能在得到高精度人脸识别性能的同时对人脸进行活体检测,显著的提高活体人脸检测的鲁棒性并降低安全人脸认证的反应时间。