基于线性判别分析理论的轴承故障诊断方法研究

来源 :安徽大学 | 被引量 : 0次 | 上传用户:ldjlovell
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
轴承作为旋转机械的重要组成部件,其健康状况影响机械设备的正常运行。因此,轴承运行状况的监测和诊断对保证机械设备的正常运行有着极为重要的意义。本文以列车轴承和普通滚动轴承为研究对象,提出基于改进线性判别分析(Improved Linear Discriminant Analysis,ILDA)的状态特征提取方法和基于自适应线性判别分析(Adaptive Linear Discriminant Analysis,ALDA)的状态特征提取方法。这两种方法从不同的角度研究如何提取有效的状态特征,结合机器学习理论实现轴承的故障诊断。针对传统线性判别分析方法在计算最佳投影方向时过度重视类间离散度大的数据,未考虑类间离散度小的数据。本文提出改进线性判别分析方法用于列车轴承轨边畸变矫正声音信号状态特征的提取。该算法利用距离函数调节LDA算法的类间散度矩阵,增加出现类间交叉或重叠样本的权重,降低无类间交叉或重叠样本的权重,减少异类样本点间的交叉或重叠。首先,采集列车轴承畸变声音信号,并矫正。然后,利用ILDA方法提取列车轴承畸变矫正声音信号的融合状态特征,并对传统特征提取方法进行对比。最后,通过极限学习机(Extreme Learning Machine,ELM)辨识列车轴承的运行状况。实验结果表明,ILDA方法提取的状态特征比传统方法提取的状态特征具有更高的识别率。另外,提出基于自适应线性判别分析的轴承状态特征提取方法,用于滚动轴承的故障诊断。该算法利用样本聚类评价指标(Sample Clustering Evaluation Index,SI)自适应调节LDA算法类内散度矩阵的权重,减少不同类别样本间的交叉或重叠,尤其是边缘类样本。首先,采集滚动轴承的振动信号。然后,利用ALDA提取能够反映滚动轴承运行状态的融合特征。最后,通过支持向量机(Support Vector Machine,SVM)识别轴承的运行状况。实验结果可以发现,ALDA方法提取的状态特征比传统方法提取的状态特征具有更高的识别率。本文首先基于列车轴承仿真信号和试验信号验证ILDA算法的有效性,然后基于美国凯斯西储大学(Case Western Reserve University,CWRU)轴承试验数据验证ALDA算法的性能,最后使用滚动轴承疲劳试验数据分别验证ILDA和ALDA算法的有效性。研究结果可以发现,本文所提出的ILDA和ALDA方法能够有效提取表征轴承运行状况的状态特征,状态特征的识别精度显著高于其他传统特征提取方法。本文的研究成果对于轴承故障诊断具有重要意义。
其他文献
甲状腺结节是最常见的临床病变之一,可由多种病因引起,其发病率逐年升高。对其治疗的关键问题是鉴别结节的良恶性质。超声诊断是甲状腺结节诊断的一种常见方法,并在识别结节大小,定位结节部位、指导穿刺上具有一定价值。当放射医师根据甲状腺超声图像判断甲状腺为恶性时,应进一步进行细针穿刺活检或手术。但是,由于缺乏经验的放射科医生可能会导致误诊。此外,甲状腺结节自身形态复杂多样,以及超声图像本身噪声高且对比度低,
自二十一世纪以来人工智能技术的快速发展,深度学习中的神经网络算法凭借其自主学习能力在分类,检测和分割等任务上得到深入研究,目前基于深度学习的目标检测算法在行为监控、目标检测与追踪、自动驾驶等多个实际应用场景中都证明了其优秀的表现能力。随着遥感技术的进步雷达波已经成功达到毫米级别,合成孔径雷达(Synthetic Aperture Radar,SAR)作为一种应用最多、穿透力较强的雷达波,能够有效探
CDMA是现代通信系统中重要的通信技术之一,其信道可供所有用户同频、同时占用,以扩频码区分用户。但在多用户情形下存在多址干扰问题,使得用户数量的上限和CDMA系统性能受到限制。基站接收机可以使用多用户检测算法来减弱多址干扰并增加系统容量,串行干扰消除(SIC)是多用户检测算法之一,由其具有实现复杂度低和系统性能高的特点而受到广泛的关注。使用这一类的多用户检测算法,可以有效缓解CDMA所面临的多址干
脑-机接口(Brain-Computer Interface,BCI)技术通过解码大脑产生的电信号,在大脑与外部设备之间建立起一条直接的通信通路,是一种新型的人机交互模式。基于头皮脑电(Electroencephalogram,EEG)的BCI由于安全性好、操作简单的优点受到研究人员的广泛关注,但头皮EEG信号的信噪比和空间分辨率不高。独立分量分析(Independent Component An
随着深度学习技术的发展和终端设备的普及,深度学习应用被广泛运行在终端设备。深度学习应用具有强大的数据分析功能,能够处理终端设备产生的海量数据并提取有效信息,以实现终端设备的智能化。深度学习应用作为资源消耗型任务,目前主要有两种部署和执行方式:一种是基于云服务器的部署和执行,另一种是基于终端设备的部署和执行。基于云服务器的部署和执行,将终端设备产生的海量数据发送到云服务器,这将带来较高的传输时延,难
随着电子商务的不断发展,车辆路径优化问题成为物流领域的研究热点,合理的路径规划可以有效提高货物运送效率,降低运输成本。进化算法在求解该问题上可以获得较好解,因而诸多学者对此进行了深入研究。然而,现有基于进化计算的求解方法搜索解的速度较慢,并且存在随着问题规模不断扩大算法性能急速下降的情况。因此,本文针对带容量约束的车辆路径优化问题(Capacitated Vehicle Routing Probl
自然语言理解作为构建人机对话系统的核心组成部分之一,具有非常重要的科学研究价值。而意图识别则是自然语言理解系统中的一项子任务,其准确性直接影响到了自然语言理解性能,进而影响人们对人机对话系统使用的体验。随着人机对话系统的不断发展和完善,越来越多的任务型人机对话系统不断地部署到人们的现实生活中,如智能手机助手、车载语音助手以及APP中的智能客服系统等等。然而,由于人类口头语言在现实场景中的随意性和简
RGBT目标跟踪是指通过结合可见光(RGB)和热红外(T)视频数据进行目标跟踪的新兴热点研究课题。多年来,基于单模态的目标跟踪技术取得重要突破,但是该类算法在面对一些较为复杂的场景或者极端条件下仍旧难以发挥良好的性能,例如光照不足、恶劣天气、背景杂乱和目标遮挡等。由于热红外成像能够很好克服上述挑战因素的影响,弥补可见光成像的不足,而可见光图像可以补充热红外成像中丢失的颜色和细节信息,因此,合理利用
随着信息社会的高速发展,网络这种数据结构存在于越来越多的现实情境,并在计算机及其相关领域得到广泛应用,对这些网络进行分析具有很高的学术价值和现实应用价值。值得注意的是,进行有效的网络分析一般依赖于对网络的表示方式。传统的对网络进行表示的方法通常是使用高维稀疏的向量,但现如今复杂网络中的连边数量和节点数量是可能达到数十亿,因此使用传统的网络分析方法在整个网络上进行计算和推理面临很多困难。网络表示学习
社会的不断进步和持续发展促使工业生产和生活环境的多样性也在不断增加。在物品的生产和使用过程中,产品表面发生异变从而导致缺陷的发生是不可避免的。因此,如何高效、准确的检测缺陷的发生,一直是人们不断思考的问题。缺陷检测是工业生产中无法避免且必要的一个环节。科学技术的进步和近年来深度学习技术的不断突破,使得机器视觉在各个应用场景的优势也越来越明显。本文以卷积神经网络为理论基础,针对工业产品表面缺陷自动检