二维过渡金属硫族化合物激子发光特性研究

来源 :中国科学院大学(中国科学院物理研究所) | 被引量 : 0次 | 上传用户:conan_1126
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
自石墨烯被成功剥离出单原子层后,二维材料就因为其新奇的光电特性引起了研究人员广泛关注。其中二维过渡金属硫族化合物由于其较大的激子束缚能,较强的自旋轨道耦合,和位于可见光区的直接带隙等特性,近十年来,引起科研界的极大兴趣。此外,在二维过渡金属硫族化合物中发现了单光子发射现象,从而将单光子源扩展到了二维体系,但是这些量子发射器的起源依然不是很清楚。另外,由于反转对称性破缺,二维过渡金属硫族化合物会具有两个简并但不等价的能谷,其能谷特性是二维过渡金属硫族化合物最吸引人的特点之一。但是作为能谷特性之一的谷极化度一直不是很高,这限制了谷电子学的应用。基于上述存在的一些问题,我们的主要研究工作如下:1.我们通过极化分辨的磁光光谱观测到了单层WSe2中与缺陷相关的单光子发射器,并且提出了一个理论模型很好的解释了其背后的物理图像。在这个实验中,三种类型的单光子发射器被观测到,它们分别具有不同的g因子和精细结构劈裂,其原因是这些量子发射器来自于不同的缺陷能级和能带的跃迁,导致不同的g因子。并且不同缺陷能级、导带和价带之间的跃迁,电子和空穴的波函数具有不同的空间重叠,从而导致不同的精细结构劈裂。这项工作结合实验对单光子发射器复合机制进行了解释,进一步阐明了这些量子发射器在层状二维材料中的起源。2.我们在转角WSe2/WSe2同质结中,观察到了线宽非常窄的局域层间激子,其线宽为100~200μe V。通过在低温下进行不同角度矢量磁场下的极化分辨的光致发光谱测量,我们观测到了这些局域层间激子g因子的各向异性。并基于自旋相关轨道电流模型确定了这些层间激子电偶极矩的空间取向。我们制备了不同转角的WSe2/WSe2同质结,发现不同的转角会对局域层间激子空间偶极矩的取向造成影响。我们的工作不仅证明了在转角双层WSe2/WSe2同质结中局域层间激子偶极矩的不同空间取向,并且扩展了这些量子发射器在二维体系的能量覆盖范围和操控自由度。3.我们利用铁磁衬底LaMnO3(LMO)和单层WS2,构成WS2/LMO薄膜异质结。在4.2 K温度,非共振激发下单层WS2谷极化度高达80%,这远远高于Si O2/Si衬底上的单层WS2,其谷极化度为15%。并且这种增强的谷极化在160 K的温度下,也可以达到53%。另外,我们发现谷极化度随温度的变化与LMO的热磁曲线一致,这表明WS2和LMO衬底之间存在着激子与磁子的耦合。我们引入了一个简单的模型来说明其背后的物理机制。此外,我们在WS2/LMO异质结中,还观察到了具有相反谷极化的两个层间激子,这是由单层WS2中导带的自旋轨道耦合劈裂引起的。我们的研究结果证明通过构建铁磁材料范德华异质结,可以操控过渡金属硫族化合物谷电子特性,为二维过渡金属硫族化合物谷电子学的实际的应用提供了一个简单且有效的途径。
其他文献
范德华二维材料体系得益于天然的层状结构与丰富的元素组成,展现出多样的力、热、光、电、磁等性质,不仅为探索低维下的新奇物性提供了理想的研究平台,也为搭建各种小型化功能器件提供了新的构筑材料。在后摩尔定律的时代背景下,二维材料的研究前沿已然碰触到维度效应的量子极限,也带来了一系列的难题和挑战。本论文围绕二维材料中的以下核心问题开展研究:(1)二维体系下的本征物性更容易受样品质量的影响,因此对高质量二维
学位
活细胞内生物大分子易位对于维持细胞正常功能起到至关重要的作用。然而,亚细胞结构如何影响大分子动力学是未知的。另外在细胞层次上,细胞会发生爬行,凋亡等行为,在这些过程中活细胞内大分子动力学有何意义也是未知的。利用单粒子荧光追踪技术,我们探究了量子点在活细胞内扩散、内吞囊泡的主动运输过程、细胞爬行过程中角质细胞伪足内扩散与细胞运动行为的联系以及细胞凋亡过程中染色质动力学和细胞核形变过程的联系。主要取得
学位
文章运用爬虫技术建立了754个物流类本科专业课程数据库;利用文本挖掘技术构造了课程内容的圆形网络图和课程结构的一致性度量方法,比较了中、英、美三国课程体系。主要结论是:(1)物流类专业设置具有区域性。(2)我国物流管理专业课程体系为“管理类占主导,经济类、流程类、工程技术类、方法类以及其他类”递减的特征。(3)供应链管理专业在三国的课程结构各不相同。(4)我国物流工程专业在结构上与英国较为相似。(
期刊
本论文主要围绕新型超导体和过渡金属氧化物功能材料展开探索,重点研究对象为Pt-Ge基三元金属间化合物,并从中探寻超导电性。此外,还研究了稀土铁氧化物Lu1-xScxFe O3材料的单晶样品制备,并基于静电纺丝法制备了正交型o-Lu1-xScxFe O3纳米线材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线光电子能谱(XPS)等技术对样品进行了结构表征,利用
学位
量子信息作为一个量子力学与信息学的交叉前沿领域吸引了研究者们极大的兴趣。人们通过把量子系统特有的纠缠和相干特性引入到传统的信息学中,打破了许多原本的固有认知,在很多研究方向中展现出了量子的优越性。本论文从三个小方向出发,展现了量子信息中对于纠缠资源的应用以及其带来的优势。在第一部分中,我们主要回顾了量子信息中的一些基础概念和知识,其中包括了量子比特、量子逻辑门以及量子态的测量等量子计算中最基础的知
学位
将超导的岛阵列结构置于正常金属的薄膜上,就组成了超导体-金属-超导体阵列。超导近邻效应的作用使金属薄膜拥有了超导电性,在外加磁场的调制下,表现出丰富的物理现象。在本论文中,通过改进微加工技术,我们制备了高质量的超导体-金属-超导体阵列样品。通过测量不同结构和尺寸的样品在超导转变区的输运性质,我们研究了其超导转变以及磁通状态的转变。现将本论文中的工作总结如下:论文的第一部分工作为样品的制备。在金属薄
学位
由于自由电子对铁电极化的屏蔽效应,同一材料里铁电性和金属性一般难以共存,同时具有铁磁性、铁电性和金属性的材料更鲜有报导,而这样的多铁金属性材料因其丰富的电荷、晶格、轨道和自旋自由度之间的耦合在信息存储和多场调控器件中具有重大应用前景。另一方面,摆脱衬底应力的自支撑钙钛矿氧化物薄膜因其超弹和机械可调等特性在转角电子学、柔性和可穿戴器件方面有着巨大的应用潜力,研究其性质和机理有着重要的现实意义。本论文
学位
腔量子电动力学主要研究的是腔光子与量子发射体之间的相互作用,它在量子信息处理和光学器件等方向都有广泛的应用。为了研究腔量子电动力学,一方面需要具有优良量子特性的量子发射体,另一方面需要具有高品质因子和小模式体积的光学腔。其中自组织生长量子点具有优良的光学特性,在激光、单光子源、纠缠光子源、量子比特等应用方面都有着突出的优势;而光子晶体腔具有高品质因子和小模式体积,可以大大增强光与物质的相互作用。它
学位
2004年石墨烯的实验发现为人们开启了二维材料大门。有着“白石墨烯”之称的六方氮化硼(h-BN)二维原子晶体材料,其晶格结构与石墨烯最为相似,但是电子能带结构却迥然不同:石墨烯是零带隙半金属材料,而h-BN却是宽带隙半导体材料(~6 e V)。近年来,h-BN二维材料已经得到人们的高度重视,其在深紫外光电器件、非线性光学、固态单光子发射、声子极化激元、以及绝缘导热材料等诸多领域,都表现出了重要的研
学位
<正>智慧交通风口下,高速公路“智慧”升级成为必然发展趋势。作为高速公路运营的生命线,收费业务是高速公路所有业务中的核心和关键,高速公路收费站的数字化、智能化升级也成为智慧高速建设的重要一环。尤其在取消高速公路省界收费站后,全国高速公路进入“一张网运行、一体化服务”的新阶段,新的收费模式让收费站在实际运营中面临新问题,也为收费站的智慧化升级带来新挑战,高速公路收费站的“谋智之战”由此展开,引起业内
期刊