金属矿深竖井工程围岩渗透特征分析与突水风险预测研究

来源 :北京科技大学 | 被引量 : 1次 | 上传用户:zdb_zhang
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
随着资源的枯竭和国家地下战略空间的需求,竖井的建设深度不断增加,其穿越的地层环境复杂性也不断增加,导致其面临的灾害危险性加大。竖井作为地面与地下空间联通的重要管廊,研究其安全高效的打通对我们经济社会建设和科学发展具有重要的现实意义和战略意义。本文是国家十三五重点研发计划“深部金属矿建井与提升关键技术”重点课题“深竖井建设工程风险分析基础理论与方法”的组成部分,以纱岭金矿深竖井为工程背景,在多场探测的基础上,基于岩石细观的非均质特征,开展了竖井深部围岩渗透特征研究,建立了金属矿深竖井工程围岩涌水量预测与突水风险分析方法,研究成果为深部竖井建设和灾害防控提供重要的理论依据。(1)通过水压致裂技术、声波测量与岩芯统计结合方法、孔隙水压测试技术分析了纱岭建井区域1600m地应力、地层完整性、孔隙水压特征,获得了纱岭深部应力场、裂隙场、渗流场的分布规律。(2)针对岩石矿物分布的均匀性特征,从矿物识别及其受力变形方面对岩石矿物空间分布的均匀性进行分析,提出了基于CT扫描技术、DIC数字散斑技术和应变片变形测量技术的岩石矿物空间分布均匀性评价方法。基于岩石巴西劈裂过程中强弱相矿物破坏的声发射信号特征,提出了以多相系数及空间分布均匀度来表征岩石的非均质特征。(3)基于岩石非均质性评价方法,研究了岩石物理力学性能与非均质特征的相关性。通过高围压下三轴试验、水力耦合试验、CT扫描技术、声发射技术、核磁共振试验,分析了岩石受力过程中的变形破坏及其裂纹扩展与非均质特征的内在联系,揭示了深部岩石损伤演化过程中的渗透变异性,提出了岩石强弱相矿物临界破坏的声发射信号识别方法。(4)针对深部岩石渗透变异性造成的竖井工程围岩涌水风险等问题,通过构建井筒渗流模型,建立了不同施工层位竖井的汇水量公式,提出了深竖井工程围岩涌水量预测及控制方法。在考虑围岩渗透变异性的基础上,综合应用构造裂隙带、断层破碎带、富水性、突水点、导水性、地应力水平等多源信息,建立了金属矿深竖井突水风险评价方法。
其他文献
作为聚变堆面向等离子体部件的首要候选材料,钨的本征脆性、热冲击脆性和再结晶脆性严重制约了其应用和发展。因此,提高钨材料的强韧性一直是热点研究课题。针对纯钨脆性高,强韧性差的问题,本文从粉末冶金工艺的源头粉体入手,采用新的制粉工艺制备了多种第二相均匀弥散的掺杂钨粉体,通过烧结致密化和形变强韧化,提高钨的晶界强度和高温稳定性。通过微观组织及力学性能分析,阐明第二相的弥散强化和晶界强化机理及对钨材料的韧
学位
核能具有清洁、高效、储量丰富等诸多优点,是目前人类社会重要的能源之一。随着核电在世界上日益广泛的应用,如何提高核电运行的安全性越来越受到人们的重视。锆由于其吸收中子的横截面低和良好的机械性能而被用作核反应堆的核燃料包壳。但随着反应堆功率的增加,燃料芯块的热膨胀和裂变产物碘的腐蚀,会使锆合金包壳容易发生碘致应力腐蚀开裂(I-SCC)而失效,增加裂变产物泄露的危险,因此,提高锆合金包壳的I-SCC性能
学位
作为路面动力响应的组成部分,路面加速度响应因与道路服役状态和车辆信息紧密相关而具有重要研究价值。一方面由物理定义可知,加速度与物体的受力状态、位移、模量均密切相关,故而路面加速度能从侧面反映路面结构的受力变形和路面材料的刚度变化。另一方面就成因而言,路面加速度正是由来往车辆所致,因此通过解析路面加速度还可获取相关车辆信息。有鉴于此,本文即围绕路面加速度,从路面结构、路面材料、车辆信息等多个角度对其
学位
Ni-Sn 瞬时液相烧结(Transient Liquid Phase Sintering,TLPS)连接工艺具有连接温度低、耐高温性能好、工艺条件简单且成本低等特点,符合新一代半导体功率器件封装工艺的要求,其连接过程动力学是调控和优化接头组织和性能的理论基础,对新一代功率芯片耐高温TLPS封装具有重要意义。本文通过研究Ni/Sn一维界面反应动力学,确定了 Ni3Sn4化合物中Ni-Sn的互扩散系
学位
TiAl合金由于其低密度、高比强度以及优良的高温抗蠕变性能等,在航空航天领域有着广泛的应用前景。但完全采用TiAl合金加工整体构件,成本高且难以实现。因此,实现TiAl合金与陶瓷或其它金属的连接对降低航空器结构重量、拓展其使用范围起着重要作用。本文针对TiAl合金的潜在连接对象(Al2O3陶瓷、Ti基复合材料、GH4169合金)系统研究连接工艺、接头界面反应产物形成机理及其与接头力学性能的关系。首
学位
本文针对Cf/SiC复合材料和304不锈钢连接中的热应力和接头耐高温问题,基于CuTi15+C+Ni→TiC+(Cu,Ni)ss反应,提出并研究了一种兼具反应-复合钎焊和部分瞬时液相扩散连接(PTLP)机制的连接方法——反应-复合扩散钎焊;针对连接材料中活性元素Ti与不锈钢反应生成高脆性的TiFe化合物,在残余应力作用下,导致不锈钢侧连接界面出现裂纹的问题,钎焊前对304不锈钢表面进行预镀镍处理,
学位
Tb-Dy-Fe材料在室温下具有优异的磁致伸缩性能。目前常用的Tb-Dy-Fe材料是用定向凝固方法制备的,具有强的<110>或<112>轴向取向。该材料的组织是以片状树枝晶生长的主相和在片状树枝晶之间形成的薄层富稀土晶界相,这种组织是一种典型的脆性组织,具有很低的抗拉强度(28 MPa)及断裂韧性(1.65 MPa.m1/2)。Tb-Dy-Fe材料低的力学性能使其在设计与应用中受到了限制。另一方面
学位
镁合金作为轻质结构材料,在国防、电子、汽车和航空航天等领域具有巨大的应用潜力。然而,由于镁合金存在较低的拉伸强度、屈服强度和高温抗蠕变性能,以及较差的韧性和耐蚀性等缺点,这严重阻碍了它的实际应用。研究发现,添加稀土(Rare-earth,RE)元素并进行时效处理是一种有效提高镁合金力学性能的方法。重稀土元素Gd和Y被认为是两种有效的固溶强化和沉淀强化的合金化元素,因此,在时效硬化型Mg-RE合金中
学位
随着不可再生能源的不断消耗,其储量日益减少,发展以核能为代表的多种可再生能源刻不容缓。核能中轻核元素的聚变反应,因其具有可再生和低放射污染等优势越来越受到关注。为了更有效的利用轻核元素的聚变反应,目前最具前景的解决方案之一是采用磁约束方法长效控制核聚变中的燃烧等离子体。国际热核实验反应堆计划的实施拟系统验证其可行性。但是,反应堆用金属结构材料的服役问题成为制约上述工作的主要瓶颈之一。结构材料及异质
学位
氢能被认为是二十一世纪最具发展前景的可再生能源。电解水制氢是一种绿色环保、可持续获取氢能的有效途径。然而,目前电解水制氢催化剂存在成本高、反应效率低、电能消耗大等问题,严重限制了其大规模应用。因此,开发高效低成本催化剂是电解水制氢工业化的关键。过渡族金属基纳米催化剂成本低,并显示出良好的电解水催化活性,然而其稳定性较差,无法满足工业应用大电流密度下长时间服役的要求。针对目前电解水催化剂普遍存在的活
学位