论文部分内容阅读
动力定位是实现耙吸挖泥船精确疏浚定位、加快疏浚速度、提升疏浚档次、提高疏浚经济效益的一种重要保证。它具有不受水深限制、投入撤离迅速等优点,并且可以使船实现精确的机动。本项目在江苏省科技厅高新技术研究项目的支持下,提出了“大型耙吸挖泥船动力定位控制算法研究”的任务,并作为硕士论文的研究课题。根据耙吸挖泥船控制系统的要求,针对动力定位系统的疏浚模式、数学模型、数字滤波、控制算法及相关问题进行了系统的探讨与研究,论文研究具有明确的工程应用背景和实用价值,其主要贡献如下:针对耙吸挖泥船复杂的工作流程,考虑到耙吸挖泥船疏浚过程的阶段性,提出了耙吸挖泥船疏浚时的八种模式,分析了DT低速疏浚时的耙管补偿力和DP艏喷时的艏喷后座力的补偿方法,并对风浪流等环境力的计算进行了详细的介绍,为以后各章打下坚实的基础。本文重点研究DP部分。根据某大型耙吸挖泥船疏浚时运动特性,建立了其低频和高频的数学模型,重点运用Kalman滤波器对其高频部分进行滤波,并编写了Matlab仿真及C语言滤波程序,探讨了Kalman滤波器的稳定性和收敛性,提出了收敛性的判别方法及改善措施。仿真结果表明:离散Kalman滤波具有良好的滤波效果,可以很好地滤除高频信号,能够满足工程实船的需要。针对实际应用中,很难建立起耙吸挖泥船精确的数学模型这一问题,在控制器设计部分,本课题运用基于模糊的PID控制算法作为其动力定位系统的工程化应用方法。在认真总结和分析实船工作人员经验的基础上,提出了根据不同偏差范围进行控制的思想,并进行了模糊规则的制定,同时用Matlab中的Fuzzy模块和Simulink对DP模式下满载、半载、空载三种情况下的位置和艏向分别进行了仿真,并进行了综合分析比较。仿真结果显示:基于模糊的PID控制器能够获得更好的系统动态性能和稳态性能,可以满足实船的控制需要,具有实际的工程价值。针对耙吸挖泥船系统的非线性等特点,在借鉴挪威理工大学T.I.Fossen博士研究成果的基础上,本文进行了适当的创新,提出了局部最优反步法,对某耙吸挖泥船动力定位控制系统进行了一些理论方面的研究、分析和设计工作。论文研究的主要贡献和研究成果已在某大型耙吸挖泥船上进行了应用,取得了很好的实船效果,获得了航道局、公司和导师的肯定与好评。