非负矩阵谱半径和弹性张量的M-特征值问题

来源 :天津大学 | 被引量 : 0次 | 上传用户:xingyu9404
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
非负矩阵作为一种基本工具,被广泛地应用于数值分析,图论,计算机科学,管理科学等领域中.对非负矩阵谱半径进行估计,又是该理论的重要问题之一.如果谱半径的上下界能表示为矩阵元素的简单函数,那么这种估计更有价值.张量是矩阵的高阶推广,随着传统的矩阵理论在处理数据上体现出来的局限性,张量分析成为科学与工程领域中应用的一个重要工具,在许多方面比如信号处理,通信数据,计算机视觉,以及图像处理等有着及其广泛的运用.其中弹性张量的M-特征值问题是近几年研宄的热点之一.本论文考察弹性张量的M-特征值问题.全文共分为四个部分.  第一部分简要介绍了非负矩阵和张量的研宄背景和研宄现状,并介绍了论文的主要内容.  第二部分主要介绍了非负矩阵和张量的基本概念和性质.  第三部分介绍了现有的矩阵谱半径的估计方法,并推导出两个非负矩阵谱半径的新界值,其结果比有关结论更加精确.  第四部分主要考虑了弹性张量的M-特征值问题,并给出新的算法.
其他文献
不动点理论是Banach压缩映射原理的深入和推广,主要研究算子不动点的存在性与逼近算法,其结果广泛地应用于方程、控制论、优化等领域.所以,研究距离空间算子不动点的存在性与
多维多项式矩阵分解问题在符号计算与控制论、网络编码、电路、信号处理、多维系统等工程计算方面起着重要的作用。本文主要讨论了多元多项式环上任意矩阵可以嵌入到一个方阵
学位
由于在军事和民用方面的广泛应用,多智能体系统的分布控制已经成为了一个热门的研究领域,吸引了来自数学、物理学、生物学、社会学、控制科学、计算机科学等不同领域的研究者
正交多项式是一个众所周知的概念,它与数学、物理及其他的科学领域的各个分支都有密切的联系。在数学研究中,正交多项式在Geogre Andrews和Richard Askey等数学家的领导下蓬
设P(G,λ)是图的色多项式,如果两个图G和H的色多项式相同(P(G,λ)=P(H,λ)),则称两个图是色等价的,记为G~H.如果与图G色等价的图H都与图G同构(G≌H),则称图G是色唯一图(或称
在过去的几十年里,由于各种网络上耦合系统在化学、生态模型、传染病模型等领域的广泛应用,所以受到了许多学者的关注。学者们通过运用不同的方法,对多种复杂的耦合系统进行
在第一部分中,我们给出了非线性薛定谔方程的物理背景和相应的研究进展,概述了非齐次非线性薛定谔方程的驻波稳定性,简要地阐述了本论文的研究工作以及研究意义。  在第二
半群理论是上世纪五六十年代兴起的一个较为年轻的代数学分支,经过几十年的发展已经成长为代数学的一个重要研究课题。1965年,美国控制论专家L.A.Zadeh发表了模糊数学的开创