论文部分内容阅读
GX160CrMoV12钢具有高硬度高耐磨性的特点,广泛应用于模具制造和机械制造领域。然而,GX160CrMoV12钢晶界上分布着粗大网状共晶碳化物,使钢的强度和韧性明显降低。因此,需要改善其晶界上共晶碳化物的形态和分布。在保证GX160CrMoV12钢硬度的基础上提高其韧性,是将GX160CrMoV12钢应用于反击式破碎机板锤的关键。本文以GX160CrMoV12钢为研究对象,通过添加Ti、Ni、Y等合金化组元及热处理工艺优化,结合金相观察、SEM及EDS分析、XRD分析、硬度和冲击韧性测试等方法,研究合金化和热处理对GX160CrMoV12-Ti-Ni-Y钢的组织和力学性能的影响,以优化的合金成分和热处理工艺制备出GX160CrMoV12-Ti-Ni-Y钢。得出如下主要结论:(1)添加0.5%Ti可显著细化GX160CrMoV12钢共晶碳化物。Ni添加量由0.5%增加到1.5%,铸态显微组织等轴化,二次枝晶臂粗化。Y添加量由0.1%增加到0.3%,铸态等轴晶组织的晶粒尺寸减小,二次枝晶臂细化,共晶碳化物形态由粗大块状向细小条状、孤立岛状转变,分布由连续网状向不连续网状转变。GX160CrMoV12-0.5Ti-1.5Ni-0.3Y钢的晶粒细小、共晶碳化物尺寸最小且呈断网分布、硬度最高为44HRC,为最优化的铸态合金成分。(2)GX160CrMoV12-0.5Ti-1.5Ni-0.3Y钢等温温度740℃退火处理后球化效果最好,球粒状碳化物弥散分布在晶内;由于720℃的等温温度低,导致扩散受限,其显微组织为短片状珠光体+共晶碳化物;由于760℃的等温温度高,导致过冷度小珠光体共析转变并未完全发生。(3)GX160CrMoV12-0.5Ti-1.5Ni-0.3Y钢在960℃淬火后得到的组织为隐针马氏体+残余奥氏体+碳化物。随着淬火温度的升高,共晶碳化物逐渐溶解,马氏体尺寸变大,残余奥氏体含量升高,硬度先升高再降低。最优淬火温度为1040℃,此时,整体网状碳化物上出现普遍熔断现象,分布较为弥散,基体为细针马氏体,硬度为61.6HRC,较GX160CrMoV12钢的硬度提高了8%。(4)GX160CrMoV12-0.5Ti-1.5Ni-0.3Y钢在100℃、200℃和300℃回火后的组织为回火马氏体+共晶碳化物。随着回火温度升高,硬度降低,冲击韧度升高。最优回火温度为200℃,此时硬度为61.4HRC,冲击韧度为11.3 J/cm~2。较GX160CrMoV12钢相比,GX160CrMoV12-0.5Ti-1.5Ni-0.3Y钢的冲击韧度提高了69%,其硬度提高了9%。