【摘 要】
:
激光干涉引力波天文台(LIGO)在2015年探测首次发现黑洞并合发出的引力波信号,开创了引力波天文学时代。引力波及其电磁对应体的发现对人类对于宇宙的观察和理解而言有着紧要的意义。引力波暴高能电磁对应体全天监测器GECAM卫星旨在完成对引力波事件的高能电磁对应体的全时段监视观测,并监测全天的高速射电暴的高能辐射、特殊伽马暴以及磁星暴发等高能天体暴发事例,为有关的物理研讨提供能谱、光变及定位等观测数据
论文部分内容阅读
激光干涉引力波天文台(LIGO)在2015年探测首次发现黑洞并合发出的引力波信号,开创了引力波天文学时代。引力波及其电磁对应体的发现对人类对于宇宙的观察和理解而言有着紧要的意义。引力波暴高能电磁对应体全天监测器GECAM卫星旨在完成对引力波事件的高能电磁对应体的全时段监视观测,并监测全天的高速射电暴的高能辐射、特殊伽马暴以及磁星暴发等高能天体暴发事例,为有关的物理研讨提供能谱、光变及定位等观测数据。卫星的载荷包含伽马射线探测器GRD和荷电粒子探测器CPD。作为探测的主要载荷,GRD探测器使用溴化镧晶体耦合硅光电倍增管阵列探测8 ke V–2 Me V的X/γ射线,并通过两颗星多探头相结合方式探测完成对伽马暴等暴发事例的定位。GRD探测器作为卫星的主要载荷,它的能量分辨率和低能域的非线性响应作为其重要性能指标,对于其完成在轨工作具有重要意义,需要作出可靠的精确标定。针对这一问题,本文开展了以下三项研究:(1)深入研究了闪烁体探测器探测伽马射线的原理和结构,对GRD探测器的结构组成、性能指标和探测原理进行了研究和分析,使用经典的源直射方法仅能得到几个离散能量点的分辨率和能量响应,而传统康普顿符合技术通过康普顿散射具有得到任意能量散射电子和散射光子的优点,但由于需要准直器确定散射角度,对精度要求较高,同时对放射源的活度要求也不低,事例率相对低下。(2)针对传统康普顿符合技术存在立体角比较小的缺点,利用广角康普顿符合技术,提出了一种新的散射探测装置,通过使用高分辨率的高纯锗探测器和设置极近的探头空间距离,克服了康普顿符合技术的缺点,可以在相对弱的放射源和短时间内获得可观的有效事例,并且可以同时得到连续能量点的事例。(3)基于广角康普顿符合技术,设计构建了一套完整的实验测试系统和数据处理方案,对GRD探测器的连续散射电子能量分辨率和响应非线性特性进行测量。通过对高纯锗探测器的能量进行筛选,得到两种不同掺杂的GRD探测器在20 ke V-260 ke V的连续电子能量响应和初步的分辨率和响应特性。实验数据分析结果表明,两种掺杂的GRD探测器的能量分辨率与入射能量的平方根成反比,并且它们的能量分辨率都达到了<5%@662 ke V。在康普顿电子能量范围内,两种掺杂都可以观察到良好的线性比例特性,对于低于100ke V的电子能量范围,双掺探头的电子响应和光子响应都是随着能量增大而减小的。与此不同的则是单掺探头的电子响应几乎不随电子能量变化,而光子响应则是随着能量增加而变大的。整体来说,两种不同掺杂的GRD探测器的能量响应线性都十分优秀,对于低于100 ke V的电子能量范围,测量的能量响应与理论相比仅仅改变了5%。研究结果对于GRD探测器的在轨工作修正具有参考意义。
其他文献
磁悬浮技术是我国交通强国战略的重要组成部分。目前,我国中低速常导磁浮技术逐步成熟化,但悬浮模块的能耗始终居高不下。相比常导磁悬浮技术,永磁电磁混合悬浮技术具备了显著的节能低碳优势。但永磁材料的磁场属于一种非线性静态衰变场,加之实际工程应用中时常面临扰动突变以及设备老化等问题,因而对于混合悬浮系统的抗扰动能力与控制精度要求极高。传统控制算法大多依赖于精准的被控对象或扰动量模型,对复杂环境下的非线性、
随着“碳达峰、碳中和”战略目标的提出,新能源汽车产业成为研究热点。锂离子电池作为新能源汽车上的动力源,对新能源汽车发展具有重要意义。因生产制造上的差异,电池组中的电池在使用过程的性能差异逐渐增大,影响新能源汽车的续航里程,所以需要电池管理系统(Battery Management System,BMS)对电池进行监测和控制。BMS中,荷电状态(State of Charge,SOC)的估计可以帮助
针对传统永磁同步电机气隙磁场难以调节,恒功率调速范围窄等问题,本文提出了一种可控漏磁反凸极永磁同步电机(Controllable Leakage Flux Reverse Salient Permanent Magnet Synchronous Machine,CLF-RSPMSM)。该电机在具有高功率密度、低退磁风险和高效率等诸多优势的同时,还能利用交轴电流来控制支路漏磁通的大小,从而间接调节气
深度学习技术被广泛应用于医学图像分割领域,与传统医学图像分割算法相比在精度和实时性方面有一定的优势。其中结直肠息肉分割技术在结直肠癌的早期治疗中具有关键性作用,可以有效降低结直肠癌的发病率。由于结直肠息肉的大小、颜色和纹理各异,且息肉与周围粘膜的边界不清晰,导致息肉分割存在较大挑战。为了解决实际分割场景下存在的问题,本文分别以Deeplabv3+和Double UNet为基准网络提出了两种改进算法
开关磁阻电机(Switched Reluctance Motor,SRM)因调速范围宽、驱动效率高、生产成本低等优点,在电动汽车、家用电器和工业生产中得到了广泛的研究与应用。但是由于本身固有的双凸极结构和非线性的电磁特性,使得SRM在运行过程中存在噪声与转矩脉动大、电流峰值高等缺点,严重制约了SRM的推广。针对上述问题,本文以一台三相6/20结构开关磁阻电机为研究对象,提出一种根据电机转速自适应改
随着LIGO/Virgo灵敏度的不断提高,越来越多的引力波事件被探测到。匹配滤波法是引力波探测的重要数据处理方法,但其需要大量匹配模板、计算效率低无法实现实时探测,因此找到一种能够快速、实时分析引力波信号的方法是目前的当务之急。随着深度学习技术在图像处理、医疗诊断、无人驾驶等领域的应用。天文学领域的专家们也尝试将深度学习技术应用到引力波信号处理中。与匹配滤波方法相比,深度学习的计算效率大大提高,有
随着云服务、大数据、物联网、无人驾驶等新型数据业务进入人们的生活,互联网数据流量正经历着爆炸式增长。然而互联网的基石——光纤通信系统与网络的传输容量在历经了多次技术革新与突破后,已增长乏力,正在逼近理论上的非线性香农极限。轨道角动量(Orbital angular momentum,OAM)是电磁波(光波)除振幅、相位、频率、偏振(自旋角动量)、时间之外仅剩还未开发的维度资源,受到了广泛的关注。基
<正>城市更新项目投融资模式设计,需要结合具体地方的综合财力、资源禀赋,以及具体项目的经营属性、商业模式、回报机制、潜在风险等综合考量,从投资主体、融资模式、平衡机制等多维度统筹谋划城市更新项目一般投资额较大,在实施过程中,将不可避免遇到资金从何而来的问题。要解决资金问题,就要解决投融资模式问题。住建部在《关于印发实施城市更新行动可复制经验做法清单(第一批)的通知》中,也专门就“构建多元化资金保障
肺炎是导致儿童死亡的严重疾病之一,且当前新型冠状病毒肺炎在全世界广泛流行,因此对肺炎的快速检测研究具有重要意义。肺炎检测不仅要求具有较高的检测精度,还需要有较好的实时性。由于医学图像中肺炎的特征不够明显,放射科医生在诊断胸部X光片中是否存在肺炎需要花费大量的时间。长时间观看胸部X光片,医生的视觉容易产生疲劳,有可能对胸部X光片中的肺炎产生漏诊和误诊的情况。随着人工智能的发展,利用深度学习的方法实现
受制于成像设备的材质及大小,当拍摄场景下的动态范围超出成像设备所能捕获的范围时,无论选择何种曝光模式,高亮区域信息或低暗区域信息在一定程度上会丢失,造成非正常曝光问题,导致图像初始细节信息损失,非正常曝光现象已成为制约图像质量的一个重要原因。图像增强技术旨在平衡非正常曝光图像的整体亮度,恢复局部区域中丢失的信息,突出图像全局纹理细节信息,来达到改善图像质量的目的。虽然已有许多学者将曝光补偿技术集成